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Foreword 
This report is written for a geodetically minded reader. For this reason back­

ground material on the theory of roundoff errors is included that could otherwise be 
found in journals, or even in monographs. Numerical analysts will find many 
portions of the text long-winded; other sections may interest them. Structural 
analysts may also find this work applicable to their discipline. The presentation is a 
compromise between complete documentation and readability. Therefore, I have 
omitted listing the computer programs and documenting some of the steps used in 
predicting roundoff. 

I have tried to make the report complete as regards the main line of thought. 
However, some complementary discussions of network theory are only referenced 
or quoted from other sources. A thorough account of this theory would require a 
separate monograph that I hope to write later. 

Mention of a commercial company or product does not constitute 
an endorsement by NOAA/National Ocean Survey. Use for publici­
ty or advertising purposes of information from this publication con­
cerning proprietary products or the tests of such products is not 
authorized. 

Library of Congress Catalog number 80-600088. 
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ABSTRACT. The theory of roundoff errors for linear equations is adapted and 
applied to a linear system of 350,000 unknowns, representing the normal equations 
of the U. S.-ground control network now being readjusted. The system is positive 
definite and sparse. Cholesky' s algorithm is used. The equations are reordered in a 
way dictated by the Helmert blocking technique. The block design is based on nested 
dissection. A linear stochastic roundoff error propagation model is used. Two 
families of computers are considered that come close to representing the two 
extremal cases of true chopping and true rounding, the CDC 6600 (with the round: 
ing option set into effect) and the IBM 360. Structural properties of the U.S. net­
work relevant to roundoff error propagation are thoroughly investigated~ Next to 
the large size of the network, weight singularities from observations of extremely 
high accuracy cause some concern. Bounds on bias and standard deviation of the 
individual components of the solution vector are derived. They indicate that the new 
adjustment of the North American Datum (NAD) is feasible on both types of 
computers. 

I. INTRODUCTION AND SUMMARY OF 
RESULTS 

1.1 Purpose 

We are dealing with a symmetric and positive­
definite system of linear equations 

Ax=b (I.l) 

resulting from the least-squares adjustment of the 
U.S. ground control network. For an overview of the 
entire new adjustment project see Bossler (1976). The 
number of unknowns is about n= 350,000. The 
unknowns are latitude and longitude corrections to 
some 175,000 stations. Orientation unknowns are 

I 

eliminated in the usual fashion when the contribu­
tions of the individual direction bundles to the nor­
mal equations are assembled. Cholesky's method is 
used to solve the normals. Formation and solution of 
the system are organized according to the Helmert 
blocking scheme. The prime purpose of this study is 
to predict the roundoff error accumulation during 
the solution of the normal equations. 

1.2 Method 

In order to keep this introductory outline simple, 

1 Permanent address: Technical University Graz, Rechbauerstr. 
12, A-8010 Austria. 
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we pretend that the whole set of normal equations is 
formed before Cholesky reduction starts. Then Hel­
mert blocking amounts to prescribing a certain order­
ing scheme to ·the stations, or equivalently, 'a certain 
ordering of the normal equations and unknowns. 
Helmert blocking actually does more than this. It 
also interferes with the process of forming the nor­
mals as well as with the process of solving them. 
However, since these details have a marginal impact 
on roundoff, their discussion will be postponed until 
chapter 3. Starting from the original normal equa­
tions 

J,au x1= b,, i= I, ... , n (1.2) 

Cholesky's method derives a triangularized system 

1~rux1 =s, i=l, ... , n (1.3) 

by means of the following set of formulas: 

I H f··= Q .. -l ,,~ 
'' '' k=l ' 

i-1 

S,=(b,- ;f;,r.,s,)lru (1.4) 

which is then solved by back-substitution 

(1.5) 

The overwhelming majority of elementary computa­
tional steps is carried out during the "triangular de­
composition phase" described in eqs. (1.4). For the 
U.S. network it is estimated that about 0.6 • 10" 
product terms r.,r,1 are calculated and accumulated in 
about 1.4 • I 0' partial sums 

(1.6) 

which are subsequently subtracted from the a,/s. 
These numbers already reflect the great saving in 
storage and computation time that occurs as a result 
of the special sparse structure of the system (I. I) and 
the effective exploitation of this structure by the 
Helmert blocking technique. There are other opera­
tions during the triangular decomposition phase. The 
square roots of the diagonal elements are taken, the 
off-diagonals are divided by the diagonals, and final­
ly there are operations that involve the right-hand 
sides. The number of square roots is n = 350,000. 
The number of divisions of left-side coefficients is 
about 1.4 • 10'. This is also the approximate number 
of product terms r.,s, to be evaluated in order to 
reduce the right-hand sides. Furthermore, there are 
n= 350,000 divisions involving the right-hand side. 

All these numbers are minuscule compared with the 
0.6 • 10" left-side product terms. The same may be 
said about the "back-substitution phase," as de­
scribed by eq. (1.5), that. involves about 1.4 • 10' 
product term evaluations and a comparable number 
of subtractions. The 350,000 divisions hardly count. 

Not only is the number of computational steps 
and, consequently, the number of roundoff errors 
greatest during the triangular decomposition of the 
matrix A, but the largest roundoff errors also 
occur here. This is due to certain outliers among the 
coefficients a,1 that exceed the size of other coeffi­
cient by two to three powers of 10. The outliers are 
caused by weight singularities, i.e., by a comparative­
ly small number of very accurate observations. There 
will be no such outliers among the right- hand sides. 

For these reasons, and to focus on essentials, the 
introduction will cover only the roundoff errors aris­
ing during the evaluation of the expressions 

(1.7) 

Numerical noise during the calculation of (1.7) will 
be the limiting factor to the accuracy of the solution 
of the linear normal equations. 

1.2.1 Two computer families 

It is assumed that all calculations are done in 
floating point with mantissas of a fixed length of T 
digits. Let {J denote the base of the number system in 
use. A floating point number is then represented as 

T 

±.XXX ••• X* {J'. 

The signed integer exponent is denoted by e. Of 
course, only the signed mantissa and the signed expo­
nent are stored. We shall assume that floating point 
numbers are normalized which means that the lead­
ing digit of the mantissa is different from zero. An 
exception is only the number zero itself, which has a 
special representation. 

Two families of computers are considered in this 
study. The first is represented by the CDC 6600, 
whereby it is assumed that the instruction set for true 
rounding is consistently used. The standard CDC 
6600 instruction set performs chopping rather than 
true rounding. If this is put into effect, the CDC 6600 
is not considered a member of the first family. On the 
CDC 6600 we have{J=2 and T= 48. Rounding is true 
with some slight flaws which we presently ignore. 

The second computer family is represented by the 
IBM 360. The base is {J = 16 and the mantissa length 
is T= 14, assuming that double precision is consist­
ently used. The arithmetic performs true chopping 
with some flaws. Infrequently the result of an addi-
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lion/subtraction may differ from the truly chopped 
result by one unit at the last position. In this case the 
result is larger in magnitude than the mathematical 
result. 

Remark: After most of the work in this report had 
been completed, and while the final manuscript was 
being compiled, the author was informed that the ad­
justment calculations will actually be done on a 
UNIVAC 1100/40. This is a binary machine with 
double precision arithmetic that allows for 60-bit 
mantissas. The machine is neither close to true 
rounding nor true chopping. However, the computer 
guarantees that the roundoff errors will not be larger 
than those encountered on the IBM 360. In section 
11.3 we will specify the modifications of the IBM 360 
roundoff error estimates that will cover the case of 
the UNIVAC 1100/40 machine. 

1.2.2 Elementary and local roundoff errors 

An elementary operation is an addition, subtrac­
tion, multiplication, or division. Assuming that the 
two operands a, b are correct, and that a <> b is the 
mathematically correct result, while a @ b is the 
computer's answer, the elementary roundoff error is 
defined as 

< = a.@ b- a<> b. (1.8) 

We adopt a random model for the elementary 
roundoff errors, aiming to obtain estimates for bias 
(expectation, mean value) E{<} and standard deviation 
(rms.-root mean square error) a{<}. We do not 
assume that the operands a, bare random, at least not 
as far as their leading digits are concerned. Only the 
trailing digits of the operands are visualized as ran­
dom, depending, in the case of the U.S. network, on 
the choice of approximate station positions and other 
arbitrarily chosen reference values. We are led to 
view elementary roundoff errors as random variables 
with uniform distribution in an interval whose 
boundaries depend on operation and operands. On 
the CDC 6600 the interval is centered at the result 
a <> b. There is no bias; E{<} = 0, except for certain 
harmless outliers, e.g., those where a±b is to be 
calculated and lbl < lal {J~. The length of the interval 
does not exceed c • [J·•, where c = fJ' is the smallest 
integer power of the base {J which is larger or equal to 
lal, lbl, la±bl in the ca1e of addition/subtraction, or 
larger than or equal to Ia • bl, la!bl in the case of 
multiplication/ division. Since the standard deviation 
of a uniformly distributed random variable equals 
the interval length divided by VTI, we assume 
a{<} = c!v'12 • 2·" on the CDC 6600. 

The IBM 360 represents nearly a truly chopping 
machine. On such a machine the bias E{<} could 
be as bad as -c/2 • 16·". The standard deviation 
could amount to c I VT2 • 16·". 

The reader will find more detailed explanations in 
chapter 2. Here the explanation is sufficient for an 
intuitive understanding of elementary roundoff 
errors, their dependency on size of the operands and 
the result in the case of addition/subtraction; 
whereas in the case of multiplication/division only 
the size of the result is relevant. This distinction has 
to do with the most dreaded wiping out of leading 
digits that may occur during addition/ subtraction 
but never during multiplication/ division. Also, the 
bias that results from a machine that does not per­
form true rounding cannot be overemphasized. 

Another essential assumption is that all elementary 
roundoff errors are stochastically independent. This 
will be important when accumulation and propaga­
tion of elementary roundoff errors are studied. 

Occasionally certain batches of elementary round­
off errors will have a combined effect that is conven­
iently considered as an entity in the subsequent anal­
ysis. Examples are roundoff errors affecting a square 
root or the result of a product sum calculation. Such 
roundoff errors will be caHed local. In a wider sense 
they also include unhatched elementary roundoff 
errors. 

1.2.3 Global roundoff errors 

First let us examine the global effect of a single 
elementary roundoff error occurring during evalua­
tion of (1.7). Assume then that 

(1.9) 

has been evaluated correctly, as well as the product 
term r,,,rp1• But when this term was added, a roundoff 
error -<u occurred, causing the result to be falsified 
as 

p 

~<~1 rk; rkj - E.;j· (1.10) 

Assuming that no further roundoff error was com­
mitted during all subsequent operations of triangular 
decomposition and back-substitution, let us try to 
determine the effect of the single elementary round­
off error <u onto the final result. 

One of the great merits of Wilkinson's work was 
pointing out that, rather than propagating the er­
ror forward through all subsequent computations, it 
is much simpler to trace it backwards to the original 
system. Let us pretend that all previous operations 
are performed backwards, of course, with no addi­
tional error. The surprising result is that the original 
system is just perturbed by <u at the position (i,J). The 
coefficient au is replaced by a,1 + <u· Due to sym­
metry and because Cholesky' s algorithm works with 
only the upper diagonal portion of the matrix A, we 
must also assume that aF is perturbed by <u· Hence 
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the perturbed system looks like 
a., ... ali ... a" ... a, • x,+C, b, 

0~ 1 ••• Ou: ..• O;i~ E:;i ••• ~~" x,+c, b, 
= (1.11) 

a,, .. aJ;+E.;_; .. a" oooOjn x,+C; b} 

a., ... a.,; . .. a,.j . .. a •• x .. +C .. b. 

In a more condensed notation 

(A + <)(X + Cl = b. (1.12) 

The solution of the perturbed system is the global 
roundoff error which superimposes itself upon the 
true result x. In linear approximation we get 

(1.13) 

The next procedure is quickly outlined. If we work in 
linear approximation, we may study the isolated ef­
fects of individual roundoff errors separately and 
afterwards superimpose their contributions to the 
global roundoff error C. 

As an intermediate step in the analysis, consider all 
elementary roundoff errors occurring during the 
evaluation of (1.7). Superposition may immediately 
take place after tracing the individual elementary 
roundoff errors backward. The result will be a per­
turbance of a;; and a1,. This perturbance is again 
denoted by <u; however, this time <u is a sum of as 
many as 2flu elementary roundoff errors traced 
backwards. Thereby flu denotes the number of prod­
uct terms in (1.7) which are different from zero. Hav­
ing reinterpreted the quantity ,,, in this way it now 
becomes a local roundoff error, eqs. (1.11), (1.12), 
and(l.13) are formally unchanged. 

Finally, consider all positions (i,J), i-0, and all 
local roundoff errors arising there. Then eq. (1.11) 
no longer applies because we have perturbances at 
more locations. However, eqs. (1.12), (1.13) may still 
be retained, provided that now we view ' as a sym­
metric matrix of local roundoff errors. We have an<;; 
different from zero at all "nonzero" locations (i,J). 
By a nonzero location we mean an entry (i,J), such 
that either a,1 = 0, or that "fill-in" occurs at (i,J) by 
means of a nonzero product term r.,r,1 which will 
make the result of eq. (1.7) nonzero, in general. 
Counting nonzero locations only above and includ­
ing the main diagonal, their total number is clearly 

(1.14) 

The total number of nonzero products to be evalu­
ated and added during the triangular decomposition 

phase is 

(1.15) 

We will be very concerned with the numbers n and r 
later when we discuss the sparse structure of A and its 
use by means of Helmert blocking. For the time 
being, our discussion applies to a sparse system as 
well as to a full one. We return to eq. (1.13) and write 
it with 

as 
(1.16) 

In order to emphasize that ,,1 = <1, we may also write 
this as 

(1.17) 

Application of the conventional laws of propagation 
of mean and standard deviation of mutually inde­
pendent random variables results in the following 
equations: 
E{C,} = - J, ~,fux,E {•"}. (1.18) 

o'{C,} =J, ft xjo'{•JJ} + 

(1.19) 

Cov{C,., Cd = }.,f,1 fo1 xl o'{•JJ} + 

+ f f (/,,;X,+ f,.:X;) * 
j=l k=j+t 

(1.20) 

These formulas are at the basis of the roundoff error 
estimates. Remember they account for only the local 
left side errors <;; that arise during triangular decom­
position. More complete formulas are specified in 
chapter 4. In order to use these formulas, data are 
needed. Information must be gathered on the ele­
ments j;1 of the inverse, on the coordinate shifts X;. 

and on the number and size of the nonzero elements 
a,1 of A, and the history of these coefficients, as well 
as of the fill-in coefficients during reduction. 

1.3 Data 

A roundoff error prediction must come early; 
otherwise it is useless. On the other hand, at the pres­
ent early stage of the U.S. network adjustment, many 
data storage and retrieval facilities are not yet opera­
tional. Access to information which would lead to an 
accurate estimation of the quantities occurring in 
eqs. (1.18) to (1.20) is limited. In addition, the 
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boundaries of the various Helmert blocks, subdivid­
ing the U.S. network, are not laid out yet. Fortunate­
ly, roundoff error estimation means playing with 
orders of magnitude rather than with specific num­
bers. The subsequent quantifications of certain proJ)­
erties of the U.S. net must be viewed in this light. It 
really does not matter, for example, whether the ele­
ments f,1 of the inverse are overestimated by a factor 
of three, or if most coordinate shifts x1 are antici­
pated as being twice as large as they actually will be, 
or that the counts on n and r will be computed very 
roughly. 

The following properties of the U.S. ground con­
trol network are considered to be most relevant to the 
roundoff study. 

(1) Size. As stated earlier, about 175,000 stations 
are anticipated in the new adjustment. About one­
third of these are first- and second-order triangula­
tion stations plus other important stations which con­
tribute significantly to the strength of the network. 
About two-thirds are supplemental stations which do 
not significantly strengthen the network. Procedural 
simplicity was the reason for keeping the supplemen­
tal stations in the adjustment, rather than eliminating 
them prior to the adjustment, as is frequently done in 
classical network adjustments. 

(2) Type of observations. It is estimated that 2 mil­
lion to 3 million observations will be involved in the 
new adjustment. About 99 percent will be (unorient­
ed) directions. About 20,000 to 30,000 will include 
distances and 2,000 to 3,000 azimuths. The positional 
fix of the network will be established by about 130 
Doppler stations. 

(3) Inhomogeneity. The density of stations varies 
from 0 to 3,000 stations per 1°X 1°- quad. Figures 
5.1a-c illustrate how the station density varies 
throughout the contiguous United States. 

The observational weights are another source of 
inhomogeneity. Many pairs and some clusters of 
closely situated stations are tied together by very 
precise measurements. The corresponding observa­
tional weights may be larger by a factor of 100 to 
1,000 than the weights of the ordinary observations. 
As a consequence, some diagonal elements of the 
normal equation matrix A will be exceptionally large. 
There will be large off-diagonal elements, too, and 
they will be arranged in a pattern that results in the 
system having undesirable numerical properties. 

(4) Structure. In some portions, the U.S. network 
renders the picture of a system of directional arcs. In 
other portions we deal with an areal directional net­
work. Base lines are arranged at distances that usual­
ly do not exceed 100 to 200 km. A unique feature is 
the transcontinental traverses (TCT). Figure 5.3 
shows the TCT loops. About 130 Doppler stations 
are distributed quite uniformly over the network. 

1.3.1 Estimation of the inverse 
A finite element model was set up to simulate the 

global features of the inverse F of the normal equa­
tion matrix A. The 350,000 station parameters were 
replaced by 780 coordinates of the corners of 2°X 2° 
quads. The loss of a large number of parameters 
amounts mostly to a loss of local detail which must 
be guessed from local adjustment and from theoreti­
cal insight based on the structural properties of the 
net. The finite element model is described in section 
5.2. 

The estimated variances of the 2° x 2° quad corner 
coordinates range typically from(0.10m)' = 0.01 m' 
in the central areas to (0.18m)'= 0.03m' near the east 
and west coasts. There are outliers of (0.35m)' = 
0.13 m' in Maine and the southern tip of Florida. 
Covariances taper off moderately at greater dis­
tances. Latitude-latitude covariances and longitude­
longitude covariances are not as much subdued as the 
cross-covariances between latitude and longitude. 
Cross-covariances are mostly below one-tenth the 
size of the variances. This is important because one­
half of allf,;'s are cross-covariances. 

The smooth features of the global covariance func­
tion resulting from the finite element model must be 
considered as superimposed by local peaks that ac­
count for local structure and for local weaknesses of 
the network. Peaks have been assumed with ampli­
tudes of up to (0.35m)' = 0.13 m'. The local covari­
ances have been assumed to be zero at distances ex­
ceeding 300 km. 

1.3 .2 Estimation of the number of nonzero loca­
tions and elementary operation steps. 

A preliminary Helmert blocking scheme, shown in 
figure 6.2, was designed and used to obtain a rough 
idea of n, the number of nonzero left-side locations, 
and r, which is twice the number of nonzero left-side 
product terms during triangular decomposition. Es­
sentially the number of stations per 1 °X 1 °-quad was 
used as input to the counts of n and r. Missing 
information had to be replaced by hypothetical as­
sumptions. It was found that n= 1.4 • 10' and 
r= 1.2• 10". These numbers may be off by a factor 
of three or more. However, it is expected that the 
true numbers will be smaller than the given ones. 

It is not sufficient to count n and r for the whole 
network. The response to an elementary roundoff 
error<}:" associated with a nonzero location is given 
by - f,1 x1 <1)•" for j = k, and by- if,1 x, + J,, x;) • <JZ" 
for j<k. (Recall eq. (1.16) and note that £1,= £,1.) The 
quantities f,1 and x, are functions of location. Hence, 
it was necessary to count the number of nonzero lo­
cations and operational steps regionally. As building 
blocks for a regional partition, the 2° x 2° quads 
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previously used in the simulation model for the in­
verse were available. It appeared preferable, however, 
to shift the dividing lines between the 2° x 2° quads in 
such a way that the nodes of the finite element net­
work became situated at the center of the new 2° x 2° 
quads. In this way, the global covariance values 
became representative of all stations situated in the 
new quads. Section 1.4 will clarify the method for 
defining the quad based counts and how they were 
used. Details are given in chapter 6 and 8. 

1.3.3 Estimation of the coordinate shifts. 

Coordinate shifts which must be expected during 
the first iteration were estimated in a study by 
Vincenty (1976). By comparing Doppler positions 
with current coordinates, and taking into account a 
datum shift, Vincenty found that the coordinate 
shifts will mostly be below 5 m. In the Northeastern 
States and in Montana, larger shifts must be 
expected. The largest shifts will be below 15m. 
Vincenty's estimation procedure is given in more 
detail in section 7 .2.1. 

1.3.4 Estimation of local roundoff errors during tri­
angular decomposition. 

To estimate the mean and standard deviation of a 
local roundoff error <,1 it is necessary to have a rough 
knowledge of the size of the operands of the elemen­
tary operations that cause the elementary roundoff 
errors whose superposition is <u· It is also necessary 
to get an idea of the size of the coefficients a,, in the 
original matrix A and of the product terms r,, r,1 and 
the partial sums (1.9) evaluated during triangular de­
composition. 

If one disregards the very precise measurements 
which cause the earlier mentioned weight singular­
ities, the size of a typical diagonal element a..,. will be 
around 10' m-'. (The normals will actually be scaled 
to arc seconds of latitude and longitude, but we pre­
fer to scale everything to the meter during our discus­
sion. The scale factors of fu cancel those of,,, in eqs. 
(1.16) to (1.20).) The off-diagonal elements au are of 
similar magnitude if they are not bound to be zero. 

The weight singularities cause some diagonals to be 
excessively large, up to 10'-10'. There are also off­
diagonals of this size, but all large coefficients will be 
confined to small submatrices of A, each having only 
a few rows and columns. 

The product terms r,,r,, and the partial sums (1.9) 
can best be understood if their geodetic meaning is 
revealed. This is best done by introducing the "par­
ially reduced" coefficients alf' as 

(1.21) 

These coefficients appear, together with b!'', if 
Cholesky's algorithm is organized in a different way, 
namely with a;)01 =au and b!0

' = b1 as: 

j=p+l, ... ,n 
(1.22) 

p=l, 0 0. ,n. 

( i_=J!+l, .. ,n 
\ J= 1, •••• , n 

Executed in this way, Cholesky's algorithm differs 
from Gauss's algorithm only in the respect that the 
square roots of the diagonals are taken. We can now 
make the following statements: 

air', i >p, is the reciprocal of the variance of coor­
dinate i, provided that the coordinates k, p<k.;.n, ki'i 
are fixed, while coordinates k, 1 .;.k.;.p, as well as 
coordinate i itself, are allowed to vary freely. 

-a!)'/ air', i,j >p, ii'jis the shift, with respect to the 
adjusted position, suffered by coordinate i if coordi-. 
natej is displaced by one unit from its adjusted posi­
tion, if coordinates k, p<k.;.n, k#,j are fixed to their 
adjusted position, while coordinates k, 1 .;.k.;.p as 
well as coordinate i itself, are allowed to vary freely. 

Based on this insight into the geodetic meaning of 
the partially reduced coefficients alf', it is com­
paratively easy to make qualitative statements about 
the history of these quantities during triangular de­
composition. Quantitative statements, on the other 
hand, are more difficult to make. One has to rely on 
results of test calculations and on judgment. Chapter 
7 deals with the estimation of the alf'-coefficients. 
Here we only briefly summarize some essential find­
ings. 

(I) Diagonal elements mr' always decrease when p 
increases. This is obvious from eq. (1.21) Therefore, 
we may bound the diagonals aft' in terms of a,\'' = 
a..,., i.e., in terms of the diagonals of the original 
normals. 

(2) If coordinate i belongs to a station which is not 
involved in a high-precision measurement, the his­
tory of aW', i ~ J~ 0~p~i-l evolves without major 
drama. The diagonals air' will decrease in most cases 
to about one-fourth to three-fourths of their original 
size. Only station coordinates that are eliminated at 
the very end of triangular decomposition are an ex­
ception. There, diagonals may drop to about 10'. 
Off-diagonals a!J', such that a,1i''IJ, will not change 
drastically either. Fill-in coefficients a!)', such that 
a, = 'IJ, will be small in most cases. 

i 
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(3) If i is a coordinate of a station involved in a 
high-precision measurement, then very few large 
coefficients are included in the equations belonging 
to station i. These coefficients may or may not drop 
sharply in size before the square root of the diagonal 
is taken. However, in any cluster of tightly connected 
stations, there will always be a few coordinates with 
coefficients that drop sharply. The details of how this 
all interacts with roundoff via the partial sums in eq. 
(1.21) are not so easily explained. In this context, 
some features of Helmert blocking which were sup­
pressed in the introductory section come into play. 
We merely indicate, therefore, that the adverse effect 
of the large coefficients upon roundoff is very much 
subdued if all stations of a tightly connected cluster 
are treated in immediate succession. The adverse 
effect could be reduced to a minimum if certain 
modifications were made to the NOS Cholesky algo­
rithm. However, we believe that even without these 
modifications, which would slow down the computa­
tion somewhat, the solution of the normals for the 
U.S. network is a safe procedure. 

It is very important to note that the number of very 
large coefficients in the original normals does not in­
crease significantly during the process of triangular 
decomposition. This can be inferred from the geo­
detic interpretation of the coefficients. Test calcu­
lations even suggest a decrease in their number. This 
effect is certainly due to the strong reduction in size 
of some large coefficients. 

1.4 Evaluation 

It is clear that formulas (1.18) and (1.19) for mean 
and standard deviation of the global roundoff errors, 
1;,, cannot be evaluated on a term-by-term basis. 
There are simply too many terms and there is too lit­
tle information on each term. Several roads are open 
for simplifying the evaluation of (1.18) and (1.19). 
We have followed some of them in this study. Toil­
lustrate the various possibilities, focus attention 
again on a single elementary roundoff error, •if', 
affecting a coefficient a,1• Note that the local round­
off error, £,1, which is an entry of the perturbation 
matrix E, is already a superposition of2J.L;; elementary 
roundoff errors. Recall that flu is the number of 
nonzero product terms to be evaluated and sub­
tracted from au, and that any product term involves 
two elementary operations, one multiplication and 
one addition. Thus, the total number of elementary 
operations is about equal tor. The global response to 
one elementary roundoff error E/t." is given by eq. 
(1.13), or, in more detailed notation, by 

(1.23) 

Suppose that the mean and standard deviation of all 
elementary roundoff errors is bounded as 

(1.24) 

(1.25) 

Suppose further that 11/11 is a bound on the elements 
f 1 of the inverse F, and that llxll is a bound on the 
elements of the solution vector: 

lt:A.;; IIIII, lx.l" 114 (1.26) 

The global response (1.23) to one elementary round­
off error is then bounded as: 

IE{/;,)1 "c llfllllxll r 

o{l;,).;; ~ 11/llllxll (J-•. 

(1.27) 

(1.28) 

Since there are r elementary roundoff errors, we get 

IE{ I;,) I "c llfllllxll r [J-• (1.29) 

(1.30) 

Primitive estimates based on these formulas are 
specified in section 4.1.4. They already indicate fea­
sibility of the adjustment on the CDC 6600. How­
ever, the bias estimate in (1.29) comes out too large 
for the IBM 360. Note that (1.29) contains the factor 
r while formula (1.30) for the standard deviation has 
I[F as a factor. The advantage of a truly rounding 
machine becomes apparent! 

The weakness of the primitive estimates (1.29) and 
(1.30) comes from the weight singularities. The con­
stant c in (1.27) and (1.28) must be chosen in agree­
ment with the largest elementary roundoff errors, 
and those are associated with the largest coefficients 
a,,. of A and its reduction states. 

Much better estimates are obtained if the coeffi­
cients alj'' are divided into two size classes. The first 
class contains the large coefficients, the second con­
tains those of moderate and small size. Separate 
bounds for size and number of coefficients in these 
two classes must be specified. Inequalities (1.29) and 
(1.30) are then evaluated separately for the two size 
classes, and the results of both are superimposed. 
This procedure comes close to that used in chapter 8, 
where safe bounds could be obtained for the global 
roundoff errors, indicating feasibility of the adjust-
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ment on both types of computers. The formulas in 
chapter 8 are more complicated because regional 
variations of /;1 and x, have also been taken into ac­
count. Denoie by e.x the individual 2° x 2° quads of 
the partition of the U.S. net. Denote by /,, the 
smoothed global covariance entries. Denote by f\:"' 
the number of elementary steps associated with a 
location (i,j), such that coordinate i refers to a sta­
tion situated in quad e. Denote by f)"' the number of 
operational steps associated with a location (i,J), such 
that coordinate} refers to a station situated in quad e. 
f1;' and f1,"' are precisely the regional r-counts an­
nounced earlier in section 1.3. For simplicity, assume 
a single size class is representative of the whole net­
work. Then 

IE{~,)I .; .E.IIxll L II!,, II {I';' + f1;'} p~ + 
2 ' 

+ a contribution due to the local peak of /;1 (1.31) 

ag,).; V'Ic llxll V L II/,, II' {I';' + f1;'} p-• + 
VTI ' 

+ a contribution due to the local peak of /;1• (1.32) 

Chapter 8 gives more complex equations, which also 
account for regional variations of x,. 

Because there is a tapering effect, the error esti­
mates are reduced by taking into account regional 
variations of J:r For coordinates (i,j) that belong to 
two stations at a larger distance, /;1 !ends to be 
smaller in size than for nearby stations. Because there 
are many more pairs of distant stations than there are 
nearby pairs, the improvement is noticeable. There 
is, however, another taper effect, namely one asso­
ciated with the coefficients al}' of A and its reduc­
tions states. This taper effect implies that the local 
roundoff errors '" tend to be smaller if coordinates 
i,j are widely spaced. In chapter 9 we have capitalized 
on this effect. Since judgment and plausibility con­
siderations have been employed there that exceed the 
threshold of what even a practical mathematician 
would consider "safe," the results obtained in 
chapter 9 are declared to lie only 95 percent safe. 

It is possible to take into account the taper effect 
of the aJ'''s in a mathematically satisfactory way. 
However, it turns out that the formulas obtained do 
not result in improved estimates for the U.S. net­
work. In section 11.2 we have specified asymptotic 
formulas for homogeneous large networks. These 
formulas contain unspecified constants and show 
how certain bounds on bias and standard deviation 
of the global roundoff errors ~' grow in proportion to 
the number of stations. 

1.5 Results 

Before we state the results of this roundoff study, 
let us briefly summarize some essential assumptions 
upon which the results depend. We include also 
assumptions on the right-hand-side coefficients ancl 
on other matters played down in this chapter. 

(I) The results apply to the U.S. network as NOS 
personnel described it to me in 1977. The features 
listed in section 1.3 are essential. Other networks 
would have a different buildup of roundoff errors. 

(2) The study is concerned with only those round­
off errors which arise and accumulate during the 
solution of the normal equations and not during their 
formation. To be precise, it is assumed that the nor­
mals of the lowest level Helmert blocks are without 
error. I do not anticipate that the roundoff errors 
that occur during formation of the lowest level nor­
mals will falsify the results more than those treated 
here. 

(3) Helmert blocking is done in such a way that 
fill-in is effectively kept down. Our estimates of n,r 
should by no means be surpassed by a factor of five 
or more. I believe that a judicious choice of block 
boundaries (in regions of low station density) will 
result in smaller n.r than our estimates indicate. 

(4) Seventy-five percent of the diagonals au are 
below 1.8 • 10' m-' (if normals are considered as 
scaled to the meter). Twenty-five percent of the diag­
onals may go up to 4.5 • 10'. These large diagonals 
must be associated with pairs or small clusters of 
tightly connected stations. 

(5) The approximate coordinates of tightly con­
nected clusters of stations must be in near agreement 
with the precise measurements which cause the strong 
ties. This will cause the right-hand sides of equations 
with large diagonals to be around 10' m-• or below. 
In any case, approximate coordinates must be good 
enough that the right- hand sides do not exceed 
l05m-1 

Under these assumptions, the following safe 
bounds for the global roundoff errors ~' suffered by 
coordinate i during the first iteration have been 
derived by a procedure documented in chapter 8: 

Bias: 

lEg,) I { ~ .~02 m 

Standard deviation: 

... on the CDC 6600 (1.33) 

... on the IBM 360 

{ 
< .00012 m ... on the CDC 6600 

a{~,) < .0000013 m ... on the IBM 360. (1.34) 
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During the first iteration, maximum coordinate shifts 
exceeding 10 mare anticipated. Our estimates may be 
reformulated by stating that about three digits of the 
largest shift will be correct on the IBM 360, and four 
to five digits of the largest shift will be correct on the 
CDC 6600. In this formulation, the estimates also 
hold for the subsequent iterations in which the max­
imum shift will be much smaller. Accuracy does not 
increase indefinitely though. Eventually the errors 
created during formation of the normals will dom­
inate the errors during solution. 

If, as I have been assured repeatedly, the propor­
tion of large diagonals is not above 10 percent and if 
a less conservative estimation procedure, docu­
mented in chapter 9, is used, the following estimates 
can be obtained. However, only a 95 percent proba­
bility is assigned to their validity. 

Bias: 

IE{~.}I { ~ .~005 
Standard deviation: 

... on the CDC 6600 (1.35) 

... on the IBM 360 

{ < .00001 ... on the CDC 6600 (1 36
) 

< .0000001 ... on the IBM 360. · 

For stations situated close together the relative posi­
tion, i.e., the differences in latitude and longitude, 
will be less perturbed by roundoff than the absolute 
positions to which our above estimates refer. If two 
stations are separated by 20 km or less, I estimate 
that the roundoff bias affecting the relative position 
is smaller by a factor of 1/10 to 11100 than the 
roundoff bias affecting global positions. For stan­
dard deviations the improvement is more modest and 
may amount to a factor of one-third to one-tenth. 

A word of caution must be expressed about Eg,} 
~ 0 on the CDC 6600. Since rounding on the CDC 
6600 is not completely true, and because Eg,.} ~ 0 
relies heavily on the linearity of the roundoff model, 
which hypothesis is also not completely true, one 
must be aware of the possibility of a small residual 
bias. It cannot be entirely excluded that the residual 
bias will be even larger than the specified standard 
deviations o{~;}. Nevertheless it is believed that four 
correct digits of the largest coordinate shift will be 
recovered. (See section 8.3 for a discussion of resid­
ual bias.) 

Remark: In section 11.3, the estimates for the 
IBM 360 have been modified for the UNIVAC 1100/ 
40. An improvement of one decimal digit results for 
the estimates on E{~ .. }, o{~,}. Thus, the global bias 
E{~,} will not exceed 0.0002 m after the first iteration 
of the adjustment. Recall that the first iteration will 

produce coordinate shifts exceeding 10 m. Hence 
four correct leading decimal digits of the largest 
coordinate shift can be guaranteed during any itera­
tion. There is a good chance that the actual errors 
will be smaller by a factor of 1110 to 11100. Errors in 
relative position of two stations at a close distance 
are expected to be smaller than the global errors by a 
factor of 1/10 to 11100. 

1.6 Verification 

In order to establish confidence in the specified 
estimates, a number of test calculations involving a 
small network of about 1300 stations were run on the 
CDC 6600. This machine provided the advantage of 
switching between biased and unbiased arithmetic. 
By using double precision (two 60-bit computer 
words for one number) in one of the adjustment 
runs, a high-precision solution vector could be ob­
tained. It served as an absolute basis of comparison 
and allowed the calculation of true roundoff errors in 
the case of chopping or rounding single precision 
arithmetic (48-bit mantissa). The NOS Cholesky 
algorithm was temporarily modified to produce 
estimates of Eg,}, og,} that were calculated from the 
actual sizes of the product terms r.,r'l and the partial 
sums of these product terms as they were available 
during triangular decomposition. Comparison with 
the true roundoff errors allowed us to check the va­
lidity of our roundoff model. The outcome of the test 
was considered satisfactory. An additional benefit of 
the test calculations was obtained in the statistics on 
the size and number of nonzero. coefficients and the 
number of elementary operation steps. These num­
bers can be compared with those predicted by the 
idealized counting models described in chapter 6. 
Chapter 10 documents the test calculations in detail. 
Reference is also made to some other roundoff tests 
which are reported in the geodetic literature. 

2. ROUNDOFF ERRORS AND WAYS TO 
ANALYZE THEM 

2.1 Elementary Roundoff Errors 

A computer can perform four elementary 
arithmetic operations: addition, subtraction, multi­
plication, and division. Let the symbol <> stand for 
+, -, •, I, respectively. Mathematically, any ele­
mentary operation combines two operands a, b, 
and yields the results a <> b, which is unique in the 
field of real numbers, division by zero excluded. The 
computer only approximates the mathematical truth. 
It will give a @ b instead of a <> b. The difference 

<~a@b-a<>b (2.1) 
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is called elementary roundoff error. Note that the 
definition of£ does not reflect any previous roundoff 
errors that may have already affected the two oper­
ands a, b. 

Different computers will produce different round­
off errors. We will restrict ourselves to the discussion 
of roundoff occurring during calculations done in 
normalized floating point arithmetic with fixed 
length mantissas. In the next subsection we will sum­
marize the features of this mode of calculation. Sub­
sequently, we will discuss elementary roundoff errors 
on two different families of computers, the first rep­
resented by the CDC 6600 and the second by the IBM 
360. Sterbenz (1974) gives more details. 

2.2 Normalized Floating Point Arithmetic With 
Fixed Length Mantissas 

A normalized floating point number a is repre­
sented as 

a=m•fJ". (2.2) 

Only the two components m (mantissa) and e (expo­
nent) are stored in a computer word. Both m and e 
may have a sign. The symbol [3 stands for the base of 
the number system used by the computer; [3 equals 2 
for the CDC 6600 and 16 for the IBM 360. The man­
tissa m, which may be viewed as an integer, has T 
digits. The leftmost digit of m is nonzero (only the 
number zero is an exception in normalization). There 
are limitations on the size of exponent e which are ir­
relevant for the present work. 

Given two operands with mantissas of length T, it 
is clear that the precise calculation of a <> b would re­
quire a mantissa of unlimited length, if <> stands for 
+, -, /. In the case of a • b, a 2T-digit mantissa 
would be sufficient. Since only T digits of a <> b can 
be stored, the result of an elementary operation must 
be modified in some way and it becomes the rounded 
result a@ b. 

For the purpose of this study, roundoff errors oc­
curring during addition and subtraction must be 
thoroughly understood. Floating point addition 
starts by making the exponents of the two operands 
equal. If a = m. • /3"• and b = m, • /3"', and if e. ;;, e" 
then the number b will be converted to the un­
normalized form b = m; • /3"•. The unnormalized 
mantissa m', differs from the normalized one, m,, 
by a right-shift of e. - e, places. If e. is truly greater 
than e,, the shift is nonzero, and is called the 
"preshift." The preshift may already be the reason 
for the loss of some digits of b. After the preshift, the 
sum m. + m; is formed in the accumulator. If 
overflow occurs, a right-shift of one place is per­
formed, and the exponent e.," which is originally 
assumed as e., is increased by one. If, on the other 

hand, m. + m; has leading zeroes, then a left-shift 
is performed in order to ensure normalization. The 
exponent is then decreased by the number of the 
shifted places. Shifts occurring after the formation of 
m. + m; are called "postshifts." Finally, the man­
tissa of the result must be shortened to T digits before 
it can be transported to any of the memory locations. 
The final result is a ® b. 

In our discussion we have excluded the case where 
one or both of the operands or the result is zero. 
Since no roundoff error occurs in these cases, they 
are of no interest to us. Other details, not given in the 
preceding paragraph, differ from machine to ma­
chine, and we shall be more specific when we discuss 
the CDC 6600 and the IBM 360 separately. Before we 
do so, we consider two ideal cases of rounding which 
will be called "true chopping" and "true rounding." 

Suppose that the precise result of a <> b is available 
and that it is normalized. True chopping simply dis­
regards all but the leading T digits of the mantissa. 
True rounding first adds a rounding digit to position 
T+ 1, and then disregards this position and anything 
to the right of it. The result is rounding as it is under­
stood in common language; For the sake of greater 
clarity we prefer the term ''true rounding'' because in 
the technical literature rounding stands for any pro­
cedure that replaces a <> b by a T-digit substitute 
a@b. 

Note that true chopping results in a number whose 
absolute value is less or equal to that of the un­
chopped one. True rounding can result in an increase 
or a decrease of the absolute value of the unrounded 
number. 

2.3 Rounding on the CDC 6600 

The CDC 6600 uses the binary number system. Ac­
cordingly the base is [3 = 2. The mantissa hasT = 48 
binary digits. The result of any arithmetic instruction 
is formed in a special register, the accumulator, 
which can accommodate mantissas of 2T = 96 digits. 
This result is shortened to T digits before it is stored 
away. A slight difficulty arises after addition or sub­
traction, because an eventual left postshift is sup­
pressed. The result is stored away in possibly unnor­
malized form with T digits and possible leading 
zeroes. A separate normalizing instruction is avail­
able, and we assume that it is always used immediate­
ly after any addition or subtraction. Evidently the 
CDC FORTRAN compiler applies this instruction 
automatically. Hence we may assume that all num­
bers in the central memory are normalized. 

The standard CDC 6600 instruction set chops the 
result obtained in the accumulator. However, a mod­
ified instruction set is also available which comes 
near to truly rounding the result. The FORTRAN 
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compiler can be prompted to use this modified in­
struction set_ Hence we may view the CDC 6600 as a 
truly rounding machine. There are some flaws. One 
of them is that after addition and subtraction, round­
ing always precedes an eventual left postshift which is 
done by a separate instruction as mentioned above. 
Hence the roundoff error is generally larger for a 
non-zero left postshift than it would be for true 
rounding without flaw. 

2.4 Rounding on the IBM 360 

The base of the number system is {J = 16. The IBM 
360 computes in the hexadecimal number system. 
The mantissa length is T = 14. The cells of the central 
memory cannot hold more than 14 hexadecimal dig­
its which correspond to 56 binary digits. The registers 
which hold the operands and the result of an arith­
metic operation are enlarged by one digit to the right, 
the so-called guard digit. If a preshift occurs, the 
guard digit of the operand with smaller magnitude 
may become nonzero. A preshift by more than one 
place can result in chopping off anything to the right 
of the guard digit. After the IS-digit result of an 
operation is formed, the guard digit is chopped off. 
In most cases the final result is equivalent to the one 
obtained by true chopping. In a few cases the result 
will differ from the truly chopped one by a I in the 
last position. The result then will be larger in 
magnitude than a ., b. Let us illustrate this under the 
assumption that a-b is wanted, and that a> b > 0. 

A right preshift of b by more than one place will 
make b smaller because b must be chopped (there is 
only one guard digit). Chopping b tends to make the 
result a-b larger than it really is. On the other hand, 
a-b, after it has been formed in the accumulator, is 
chopped again, which tends to make it smaller. The 
combined effect of the two choppings that compete 
with each other may in some cases cause a e b to be 
larger than a-b; in some cases a e b will still be 
smaller or equal to a-b. 

2.5 Local Roundoff Errors 

The solution of a linear system of equations is 
done by a great number of elementary steps. For the 
U.S. network the number of steps is of the order 10". 
Frequently, the roundoff errors occurring during a 
number of individual steps will have a similar global 
effect on the final result, and the analysis may be 
simplified if the roundoff errors of such a batch of 
individual steps are treated collectively. Usually such 
a batch of steps will be executed either successively, 
or it will affect a specific important intermediate 
quantity. We will call the combined roundoff error 
of such a collection of steps a "local" roundoff 
error. Typical examples follow. 

(I) The result of the calculation of a square root. 
The square root is usually calculated by a subroutine. 
It does not make much sense to analyze separately 
the roundoff effect of each individual step executed 
by this subroutine. Only the combined effect upon 
the quantity returned by the subroutine, i.e., the 
square root is of interest. Hence, we will make 
assumptions on the roundoff error suffered by the 
square root, based on experience or given in the 
reference manual of the subroutine. 

(2) Accumulation of inner products. Frequently, 
in particular during the execution of Cholesky's algo­
rithm, inner products of the form 

(2.3) 

have to be calculated. Subsequent steps will use only 
p as input, but never any partial sum occurring dur­
ing the calculation of p. Hence the final result of the 
entire calculation will depend on only the accumu­
lated effect of roundoff errors onto p. On the other 
hand, this accumulated roundoff error will depend 
very much on the size of a,, b, and on the partial sums 

j 

p1 = ~. a, • b,. (2.4) 

Hence, case (2) differs somewhat from case (I). The 
concept of a local roundoff error affectingp does not 
save much labor. It merely makes the analysis easier 
to overlook. First, we have to determine how p is 
affected by roundoff. Once this is done, we need only 
to remember the roundoff error of p and forget those 
committed during the intermediate steps of the calcu­
lation of p. In this way, the number of quantities 
which must be carried along during the roundoff 
analysis is conveniently decreased. 

Remark. Once certain roundoff errors have been 
accumulated into batches with a resulting local 
roundoff error, there is no reason to distinguish fur­
ther between these local roundoff errors and the re­
maining unhatched elementary ones. We may call 
them all local roundoff errors in the wider sense, or 
again simply local roundoff errors. This will simplify 
the terminology in the discussion of global roundoff 
errors. 

2.6 Linear Roundoff Error Propagation 

Wide sense local roundoff errors affect the input 
to subsequent computational steps. Roundoff errors 
propagate. The final result is falsified by a global 
roundoff error which is the result of all the local ones 
and their propagation. The precise law of roundoff 
error propagation is extremely difficult to describe 
and to handle. Simplifying assumptions must be 
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made. One way to simplify the analysis is to try to 
establish bounds on the global roundoff errors, such 
as those advocated by Wilkinson and his school. 
Wilkinson-type estimates yield precise, deterministic 
bounds which in many cases turn out to be overly 
pessimistic. Another approach, advocated and 
theoretically justified by Tienari (1970), is to linearize 
the laws of roundoff error propagation. We will 
follow this line of reasoning and assume that any 
wide sense local roundoff error '' affects the final 
result as c, • '" where c, is a vector of as many com­
ponents as. there are numbers representing the final 
result. The total effect of all elementary and local 
roundoff errors onto the final result is obtained as 

(2.5) 

The sum is extended over all local roundoff errors. 
The above formula is remarkable in some respects 
and deserves further discussion. At first sight it 
resembles a familiar formula frequently used when 
the error of the result of a certain formula expression 
due to errors in the input data is to be analyzed. The 
analogy is partially misleading. Roundoff errors do 
not depend on initial data alone; they also depend 
very much on the sequence of elementary steps which 
are executed during the evaluation of the formula. 
Specifying a mathematical expression such as 

(2.6) 

a,. 

is not sufficient in order to analyze the roundoff 
errors. It must be specified in which particular se­
quence the individual operations are performed. A 
computer algorithm breaks down the formula into a 
sequence of elementary steps, and thus lends itself to 
roundoff analysis. 

By the way, the above formula expresses the solu­
tion for the second unknown x, of the 2 x 2 sym­
metric and assumedly positive definite system of 
linear equations: 

(2.7) 

If Cholesky's algorithm is used to solve the system, 
we should rewrite the above formula as eq. (2.8). 

But even this is ambiguous. The subsequent algo­
rithm, eq. (2.9), removes any doubt in which se­
quence the elementary steps are performed. 

J a,- [ .!!..::...] ' 
~ 

Xz = 

Ja,-[ .!!..::...] ' 
~ 

(I) r,. =..;a,; 
(2) r11= a12lrn 

(3) s, = b,lr,. 

(4) an>= a22- ru * r,l 

(5) b!' 1 = bl- ,12 * s, 

(6) r,=v'OW 

(7) s,=bf"lr, 

(8) x, = s,lr,. 

(2.8) 

(2.9) 

The symbols ru, ru, r22, s., S2, aw, b~ 11 denote in­
termediate results during execution of the algorithm. 
The notation is motivated by features of Cholesky's 
algorithm which transforms the system 

(2.10) 

into the triangularized system 

(2.11) 

whereby 

(2.12) 

is an intermediate step. We will deal with Cholesky's 
algorithm more systematically later. For the mo­
ment, let us try to identify the local roundoff errors. 
On a real-life computer, the algorithm formulated 
earlier would be carried out in the following per­
turbed way: 

(I)·/',.= ..;a;;+,, 
(2) rl2 = a121"fn + E:l 

(2.13) 
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(3) s, =b,!r., + ,, 
(4) Qgl =On- fn * f'n+ £4 

(5) bf 1 =bz-Tn*S,+£s 

(6) T22 = v'Gi:P + £6 

(7) Sz = bf 11fzz + £1 

(8) :x, =s, ;'!', + ••. 

(2.13) 

The roundoff errors £z, E.3, £4, Es, £ 7, £ 8 are elementary 
roundoff errors as they were introduced in section 
2.1. The errors'" <6 are local roundoff errors in the 
narrow sense. (See section 2.5.) All the <'s can be 
viewed as local roundoff errors in the wider sense. 
We have used tildes to denote quantities which are 
already affected by previous roundoff errors. The 
final, or global, roundoff error suffered by x, is 

(2.14) 

According to the linearity assumption, this error is 
represented as 

(2.15) 

Let us illustrate how the c,'s can be determined. 
Two principles underlie any linear error analysis. 

These principles are (I) isolation of error sources, 
and (2) linear superposition of the isolated effects. 
The two principles allow us to analyze any <, sepa­
rately such as if,,, for a particular i, is the only local 
roundoff error that occurs. Its effect on the final 
result is c1 E.1• We can do this for all £/sin succession, 
and finally superimpose the c, <,linearly. 

As an example, let us try to determine c,. We 
assume that <1 is the only local roundoff error which 
occurs. Once it has occurred, we propagate it 
through the subsequent steps of the algorithm, using 
linear approximation whenever necessary. We get 

(I) r.,= VG,; 

(2) f12 = anlr11 +E.z 

(3) s, = b,!r., 

(4) Q~~~ = G22- ,.,22 =On- (rn +£z)l = agl - 2rn E.z 

(5) 'b1' 1 =b2 -'fns,=bz-(rn+Ez)S, 
= bl" -s,<, (2.16) 

(6) ~ - · ~- · '.-;-;".,-' ----:::2-- ( I ) Tn-V 021'-y 022- Tn£z-Tn- f12 fnE.z 

(7) s, = bl" !r, = (bl" - s,,,)/(r,- (r.,!r,)<,)= 
= S 2 - (s/r22- b1' 1 r,zl riJ£ 2 

(8) X2 = Szl'fn = (sz- (sJ r22- b1' 1 r121ri..JE.z)l 

(r11 - (r.,!r,)<,) 

= Xz - (s.frlz- b11J Tnf fz4z- Szfnf r]J£z. 

Hence, we obtain 

(2.17) 

This is a rather complicated expression which is 
shown here to illustrate the principle of linearization. 
However it is clear that the above method of deriving 
c,'s would not work for a system of several hundred 
thousand unknowns. More efficient and systematic 
methods must be used. They are available through 
the so-called principle of backward analysis, invented 
by Wilkinson, which is outlined in the next section. 
See also Wilkinson(1963). 

2. 7 Backward Analysis 

Let us now return to the linear system 

which, in matrix form, is written as 

Ax= b. 

The solution is expressed as 

X=A-'b. 

(2.18) 

(2.19) 

(2.20) 

The reason why the roundoff error analysis of the 
previous section turned out to be so complicated was 
that we tried, by a method called forward analysis, to 
propagate the roundoff error of step 2 through all the 
algebraically complicated steps that followed. Wil­
kinson pointed out that it is frequently simpler to 
trace local roundoff errors backwards through the 
previous steps of the algorithm until the original in­
put data are reached. Then the result is a perturbed 
set of the original equations that is analyzed by con­
ventional perturbation methods. In the case of our 
linear system, the perturbed set of equations is 

(A + <) (x + C) = b + '1 (2.21) 
' 

and the resulting perturbation of the solution is ob­
tained in linear approximation as 

(2.22) 

Note that< denotes a matrix and that C. '1 denote vec­
tors. To illustrate, let us consider again a single local 
roundoff error £1 , which now will be traced back­
wards. Tracing <1 backwards is simple enough in­
deed, and it is immediately seen that the effect of£, 
on the solution is the same as if the original system 
were perturbed in the following way: 
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Note that the assumption of symmetry is at the basis 
of Cholesky' s algorithm. Hence any error traced 
back to a, must necessarily also affect a,.=a,. In the 
notation introduced earlier we had 

' = r 0 ro"''] L fuEl 
~ = [g]. (2.24) 

Consequently 

(2.25) 

which leads to 

(2.26) 

Backward analysis is not always simpler than for­
ward analysis, but in the case of a large linear system 
it is an indispensable tool. 

2.8. Stochastic Assumptions on Roundoff Errors 

We will treat elementary roundoff errors as 
mutually uncorrelated random variables. Theoretical 
support for this assumption is found in Feldstein 
(I976). Henrici (1964) gives a good presentation at an 
introductory level. We do not assume that the coeffi­
cients of the original equations and of the various 
reduction states are random variables, at least not as 
far as their leading digits are concerned. However, 
the lower order digits of these coefficients will be 
rather random, and so will roundoff that results 
from combining the coefficients by arithmetic opera­
tions. We will be interested mainly in the mean and 
standard deviation of the elementary and local 
roundoff errors, and use the familiar propagation 
laws to study the accumulated effect of these errors. 
The propagation laws follow: Let '" ,,, ... , '" be 
mutually independent random variables. Then 

E {c,,,+ ... +co<o} = c,E{<,}+ ... + c"E{<o} 
(2.27) 

a{c,,,+ ... +c"'"} =J c: a'{<,}+ ... + cJa'{<o} 

E stands for expectation (mean) and a for standard 
deviation. The assumption of mutual independence is 
essential for the second relation but not for the first 
one. 

Mean E{<} and standard deviation a{•} of an 
elementary roundoff error' = a @ b - a .,. b depend 
on a variety of factors, namely (I) the type .,. of the 
arithmetic operation, (2) the size of the numbers a, b, 
(3) base fJ and length of mantissa T, and (4) the pecu­
liarities of the machine arithmetic. Trying to specify 

precise laws forE{<}, a{<} would result in a discussion 
of a great variety of cases and in very complicated 
expressions. Hence, we will try to simplify these laws 
somewhat and arrive at workable expressions that 
allow us to estimate the global roundoff errors of the 
U.S. network with reasonable closeness and safety. 

2.8. I Addition and Subtraction 

There are cases when the elementary roundoff 
errors are zero. If a = mo•fl"o, b = m,•fl'', and a±b 
= m .. tb*f3""±b, and if ea. = eb = e,.±b, then certainly 
no roundoff error occurs. If eo and e, differ by not 
more than T, and if a left postshift of at least leo -e,l 
places occ11rs, ' will be zero, provided that true 
rounding or true chopping is done. However, in most 
situations where eoo#e., a nonzero roundoff error will 
occur. If the smaller exponent does not exceed the 
larger exponent diminished by T, the preshift will 
completely wipe out the smaller operand. The 
roundoff error will be deterministic in this case and 
will be equal in magnitude to the smaller operand. 
The result a±b will then be biased, even if a truly 
rounding machine is used. However, the bias will be 
very small, and we shall neglect it in the sequel, since 
other effects will largely dominate it. In those situa­
tions where a nonzero preshift does not completely 
wipe out the smaller operand, as well as in the case of 
a nonzero postshift, the elementary roundoff error 
will be due to a loss of trailing digits and may be 
viewed as a random variable. (Recall that leading 
digits are never viewed as random, only trailing 
ones.) 

Let us now discuss the two types of computer fam­
ilies separately, represented by the CDC 6600 and the 
IBM 360. We will adopt simplified mathematical 
models for their rounding features and discuss the 
merits and shortcomings of these mathematical 
models. 

2.8. I. I Model for addition and subtraction on the 
CDC6600 

Recall that earlier we assumed that the rounding 
instruction set is used, and that the results are always 
normalized. Let c denote an integer power of the base 
2 which bounds the magnitudes of the operands a,b 
and of the result a±b: 

c = 2'>Max{lal,lbl, la±bl}· (2.28) 
We assume that the elementary roundoff error 

• = aiJ:)b- (a± b) (2.29) 

is a random variable having mean and standard devi­
ation, given by 

c 
E{•} = 0 a{•} = --2_,'. (2.30) 

VTI 
The zero mean is justified by the true rounding 
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feature. Positive and negative roundoff errors are 
equally likely. The small biases that occur when the 
preshift wipes out the smaller operand completely are 
neglected. The formula for the standard deviation 
a{£} results from the assumption that the roundoff 
errors are distributed uniformly in the interval 

_ _£_2-48 ~ £ ~ +_£_2-48. 
2 2 

(2.31) 

Recall that the standard deviation of a random 
variable which is equidistributed in the interval [a, m 
has the value [{J-a]/V12. 

Note that our formulas in most cases overestimate 
a{E} and never underestimate it. There are situations 
in which a\E} is bound to be zero. Besides this reason 
for overestimating a{•}, there is the problem of 
bounding lal, lbl, la±bl in the above stated way, by 
the smallest power c of the base 2. In practical ap­
plications we will rarely be able to make cas small as 
possible, and we will overestimate it by a few powers 
of two. Hence our estimates will also be too large for 
this reason. On the other hand, they will not be over­
ly pessimistic either, as should become clear later. 

Remark: The CDC 6600 differs from true round­
ing in one respect that is worth mentioning again. 
Because the results of addition and subtraction are 
obtained in unnormalized form and are normalized 
only by a subsequent separate normalizing instruc­
tion, the roundoff error will have a larger standard 
deviation in all cases where a left postshift occurs. 
This is clear because the unnormalized result has 
some digits cut off that would be saved if rounding 
occurred after the postshift. However, note that our 
upper bounds on a{•} are still valid and that the as­
sumption of E{•} = 0 is unaffected. 

2.8.1.2 Model for addition and subtraction on the 
IBM360 

Since the base equals {J = 16, we choose c as an 
integer power of 16, such that 

c = 16' >Max {Ia!, lbl, la±bl}. (2.32) 

We pretend that the IBM 360 is a truly chopping 
machine and assume that • is equidistributed in the 
intervals 

depending on the sign of a±b. From these assump­
tions we get 

E{•} = -.£ 16-" sign(a±b) 
2 

c a{•} = --16-". 
VTI 

(2.34) 

The magnitude of the mean E{•} as well as the stan­
dard deviation will be overestimated again. Some 
reasons are described in the previous section where 
we dealt with the CDC 6600. Another reason is that 
on the IBM rounding occurs after a possible left 
postshift. In addition, we know from the discussion 
in section 2.4 that the IBM 360 is not precisely a truly 
chopping machine. In the subtract magnitude case, 
and when the preshift exceeds one place thereby, 
there is a small chance that the result will be rounded 
upwards rather than downwards. As a consequence, 
the mean will be slightly decreased (in magnitude) 
and so will the standard deviation. We will prove this 
in the following paragraph. 

Without losing generality we can assume a> b > 0, 
and that a- b is calculated. Further, the underlying 
assumption is that e. ;;. e, + 2. Rounding will deviate 
from true chopping whenever the guard digit of the 
preshifted b is zero and when nonzero digits to the 
right have been chopped. Otherwise true chopping 
will occur. If no postshift occurs, elementary round· 
off errors will be equidistributed in the interval 

rather than in the interval 

-c16-14 ~E.~0. 

Hence we will have 

E{£} = -.£ 14 16-" 
2 16 

while a{•} will be unchanged as 

c 
a{E} = --16-". 

VIT 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Should a postshift occur, which under the present as­
sumption can amount to only one place to the left, 
E{•} and a{•} would have to be divided by the base 
16. Because such a postshift is unlikely, we see that 
the approximation is fairly close even in the patho­
logical subtract magnitude case. Note also that under 
no circumstance will the magnitude of E{•} or of 
a{£} be underestimated. 

2.8.2 Multiplication and Division 
In this subsection, let <> stand for • or I. Define c 

as the smallest power of the base {J, such that 

c= {J'>Ia<> bl. (2.39) 

On the CDC 6600 we assume that the result a @ b is 
the truly rounded one. Hence 



16 A Priori Prediction of Roundoff Error Accumulation in the Solution of a Super-Large 
Geodetic Normal Equation System 

E{t} = 0 
(2.40) 

c 
o{t} = -- 2 ... ". 

v'TI 

On the IBM 360 the result is the truly chopped one. 
(See Sterbenz (1974: p. 23).) Hence we have 

E{E} = -.E.I6-"sign(a~ b) 
2 

c o{t} = -- 16-". 
VTI 

2.8.3 Local roundoff error of the square root 

(2.41) 

The square root is taken by a subroutine. If it is 
calculated with T digits, its accuracy may be inferior 
to that of the arithmetic operations. The programmer 
can improve upon its accuracy either by iterative re­
finement or by taking the square root in higher preci­
sion. The extra computation time needed for improv­
ing the square root will be irrelevant in our case 
because only a few square roots are taken during 
Cholesky's algorithm as compared to the bulk of 
additions and multiplications. 

We therefore assume that the accuracy of the 
square root is practically equivalent to that of the 
four arithmetic operations. Defining the local 
roundoff error of the square root by 

(2.42) 

where the left-hand side is the result obtained by the 
computer, we introduce 

c= f3'>va 

and assume for the CDC 6600 

E{t} = 0 

c o{t} = --2-" 
v'TI 

and for the IBM 360 

E{t} = -.E.16-" 
2 

c o{t} = --16-". 
VTI 

(2.43) 

(2.44) 

(2.45) 

3. CHOLESKY'S ALGORITHM APPLIED TO 
THE NORMAL EQUATIONS OF GEODETIC 

NETWORKS 

3 .I Cholesky's Algorithm for a General Symmetric 
Positive Definite System 

Suppose that the system is written in matrix form 
as 

Ax= b. (3.1) 

Cholesky's algorithm relies on a decomposition of 
the positive definite matrix A as 

A= RTR (3.2) 

where R is an upper triangular matrix. During the 
first or so-called "triangular decomposition phase" 
Of the algorithm, the system is, in effect, multiplied 
by (R')-'. The result is the following triangular 
system: 

RX=S (3.3) 

with 

s = (R')-• b. (3.4) 

During the second or "back-substitution phase" of 
Cholesky's algorithm, the triangular system is solved 
for x recursively, starting with the the last component 
of x and proceeding to the first. 

The details of Cholesky's algorithm can be best 
described by switching to indices notation. The 
original system then reads 

(3.5) 

The triangularized system is 

(3.6) 

which is calculated from the original system by 

i-1 

ru=(O;j- k~/ki,kj)lr;;,j= i+ 1, ... , n i= 1, ... , n. 

i-1 

s, = ( b,- ;'f,;,r.,s,)/ r, (3.7) 

During the back substitution phase, the triangular 
system is solved by 



Cholesky's Algorithm/or Normal Equations 17 

3.2 Partial Reduction by Cholesky's Algorithm 

Split the original system as 

Aux, + A12Xz = bt 
A 21 X 1 + A 22 X 2 = b:z. 

Split R accordingly: 

R = [~" ~::J 

(3.9) 

(3.10) 

From the equation Rr R = A we deduce the following 
identities 

R 1~R 12 

R?;R 12 + RI;R22 

A., (3.11) 

Multiply the first set of the original normals by (R T.t' 
and then eliminate the unknowns x, from the second 
set by subtracting proper multiples of the equations 
of the first set, the multiplying matrix factor being 
Az, R.-l = R'{;. The resulting system is 

RuXt + R 1zXz = S1 

AWxz = b't). 
(3.12a) 

(3.12b) 

The second set (3.12b) of these equations is called the 
partially reduced set of normal equations. Explicit 
and equivalent expressions for the quantities in­
volved are 

A~1 =An -R,~Rn = ~izR:zz = 

= A22- Az,A ,-lA 12 

b~> = b2 - R?;s, = b:z- Az1 A ,-,'b,. 
(3 .13) 

These expressions are easily checked by the identities 
exhibited above. The last expression in any of the two 
lines reveals that the reduced normal equations do 
not depend in any way on the peculiarities of Cho­
lesky' s algorithm. In fact, any method of elimination 
that removes the unknowns x, from the second set by 
subtracting proper multiples of the first set must 
uniquely arrive at the partially reduced normals ex­
hibited above. 

In indices notation, the partial Cholesky reduction 
is 

i-1 
r .. i= (au- "~.'~c;rkj)/r,.,., j= i+ 1, ... , n i= 1, ... , p 

(3.14) 

' W..r>=au-~/~c;T~cj,j=i+l, ... , n ! i= p+ I, ... , n. 

(3.14) 

Cholesky's algorithm can be organized in many 
different ways. The programs used by the NGS, writ­
ten by R. H. Hanson and based on earlier work of 
Poder and Tscherning (1973) at the Danish Geodetic 
Institute, execute Cholesky's algorithm in the follow­
ing manner; 

FORj= I TOn+ I 

FORi= I TO MIN(n,J) 

SUM=O 

FORk=! TOMIN(p,i-1) 

SUM=SUM + A(k,i) •A(k,j) 

NEXTk 
A(i,j) = A(i,j)-SUM 

IF (i-<;MINU-1 ,p)) A(i,j) =A(i,j)/ A(i, i) 

NEXTi 

IF U-<;p) AU,j) = v AU,j) 
NEXTj. (3.15) 

In this algorithm, the A(i,j) are place holders. They 
denote storage locations for a number of quantities. 
In detail, 

• the original coefficients au are stored at A(i,j); 
the original coefficients b, are stored at 
A(i,n+ 1); 

• the ru are stored at A(i,j), the s, at A(i, n+ 1); 

• the a:;• are stored atA(i,j), the b~' at A(i, n+ 1). 

It should be stressed that the above algorithm is 
still a simplification of the actual NGS programs. 
First, these programs make use of a more compli­
cated data structure which a\lows storage and re­
trieval of coefficients A(i,j) columnwise to and from 
mass storage (disks). Second, the programs allow for 
exploiting the sparsity of the normal equations to 
some extent. The normals have many zero coeffi­
cients. If the equations are ordered in a sensitive way, 
many of the zeroes are retained throughout the 
reduction. This results in a great saving of computer 
storage and computation time. The NGS programs 
store only a section of each column, excluding coeffi­
cients that will never become nonzero during the ex­
ecution of the algorithm. We shall come back to the 
problem of ordering in section 3.5. 

Remark: We briefly mention another way to exe­
cute Cholesky's algorithm, which amounts to a series 
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of partial reductions for p proceeding from I to n. In 
this fashion Cholesky's algorithm becomes very sim­
ilar to Gauss' algorithm. Denote ai;' = au and 
bi"' = b,. We then have 

/', =·~ PP v upp -. 

a (p>-atp-tJ.:......-., f ij-ij 1 P 1 PJ 

b~P> = bc;-~>-rp,s, 

i=p+l, ... ,n 
j=i, ... n 

(3.16) p=!, 
. . . ,n 

If the algorithm stops at any p<n, a partially reduced 
system results. It adds insight into the problem of 
equation ordering, discussed later in this section, that 
any equation is modified by either dividing it by the 
square root of the diagonal element or by subtracting 
proper multiples of preceding equations. 

Remark. Common to all versions of Cholesky's 
algorithm is that they operate only on the portion 
above and including the main diagonal of the matrix 
A, as well as on the right-hand side. Hence only the 
upper triangular portion of the matrix A needs to be 
stored in computer memory. Sul:istantially more 
storage is saved if the sparse structure of A is ex­
ploited, which is typical for matrices associated with 
network problems. 

3.3 GeodetiC Normal Equations 

Our system of normal equations results from a 
geodetic ground control network. Adjustment is 
done on a spheroidal rotational ellipsoid. We assume 
that the reader is familiar with the principles of net­
work adjustment. Our outline will mainly serve to 
point out peculiarities and to specify the terminology 
and notation used in the sequel. 

The network will be adjusted by variation of 
parameters. The parameters, or unknowns, are the 
ellipsoidal coordinates of the stations (points, 
nodes). Any station has two parameters, namely 
ellipsoidal latitude and longitude. The so-called 
orientation unknowns of direction bundles will be 
eliminated before the normal equations are assem­
bled and will not appear in the final set of equations 
which serves as the input in our study of roundoff 
errors. 

Approximate coordinates must be known a priori. 
Denote these coordinates by the vector p<•>, The ob­
servations 1, comprising distances, azimuths, bun­
dles of directions, and Doppler positions, will not fit 
the approximate coordinates. There will be discrep­
ancies !J.l, i.e. only the set of observations £-111 will 

fit the approximate coordinates. An adjustment ap­
plies corrections v to the observations, so that they 
become the corrected observations 1 + v. It also ap­
plies shifts !J.p to the approximate coordinates so that 
they become the adjusted coordinates p = p<•> + !J.p. 
The functional relation between the corrected obser­
vations and the adjusted coordinates is (after elimi­
nation of the orientation unknowns) in linearized 
form written as: 

!J.1 + V= B !J.p . (3.17) 

Weights are prescribed for the individual observa­
tions. They are arranged along the diagonal of the 
weight matrix P which has zero off-diagonal coeffi­
cients. Gauss' minimum prinCiple, i.e., 

vrPv=Minimum (3.18) 

is used to uniquely determine v and !J.p satisfying the 
side constraints !J.1 + v = B !J.p. The extremum prob­
lem leads to the normal equations 

BTPB!J.p=BTP!J.£ (3.19) 

which for brevity are written as 

Ax= b. (3.20) 

Note that the unknowns x are actually small shifts 
leading from the approximate coordinates to the ad­
justed coordinates. 

An important feature of geodetic network adjust­
ment is the local nature of the observations. Any 
observation involves only a small number of stations 
which are located close together. For distance and 
direction observations, direct visibility between two 
stations must be given. This limits the spacings be­
tween stations connected by such a line of vision to 
30 km or less in most cases. The normal equation 
matrix will have only nonzero off-diagonal elements 
au * 0, if i,j refer either to the two coordinates of one 
station or to coordinates of two stations connected 
by a measurement. Such a connection is established 
either by a direction, a distance, or an azimuth be­
tween the two stations, or is due to the preelimination 
of the orientation unknowns in case of a directional co­
observation of the two stations from a third station. 
The Doppler position observations refer to the two 
coordinates of one station and will-not cause any au, 
i*}, to be nonzero. While the network covers a large 
portion of a continent and extends over several thou­
sands of kilometers, there will only be nonzero coef­
ficients au if the involved stations are not farther 
apart than 60 km (in most cases). 

Remark. In the literature on numerical linear 
algebra it is frequently argued that formation and 
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solution of a normal equation system is not a good 
procedure for doing a least squares adjustment. In· 
stead one should go along with the observation equa­
tion system (3.17), subjecting it to orthogonalization, 
singular value decomposition, or other procedures. 
The argument is based on the condition number of a 
matrix. The condition number of the normal equa­
tion matrix is inferior to that of the observation 
equations. This is certainly true. On the other hand, 
it has been proven that storage requirement and com­
putational labor is much less for a geodetic network 
if it is adjusted by the direct solution of a normal 
equation system as compared to any other procedure. 
Refer to the discussion in Avila et a!. (1978, p.l6). 
Singular value decomposition or orthogonalization 
appears to be very efficient for moderately large 
linear systems that are very ill-conditioned. In the 
case of very large sparse geodetic network systems 
which are not extremely ill-conditioned, storage re­
quirement and computational labor are the decisive 
criteria for selecting a solution method. The observa­
tion equation matrix for the U.S. network is of size 
3,000,000 x 350,000. To my knowledge no tech­
nique is known that preserves sparsity during or­
thogonalization or singular value decomposition as 
efficiently as that method which applies direct elim­
ination to the normal equation system, as will be 
shown later in this chapter. 

3.4 Geodetic Interpretation of the Partial Cholesky-
Reduced System 

The geodetic meaning of the quantities appearing in 
the system that has undergone a partial reduction by 
Cholesky's method is perhaps best understood in 
terms of a parameter transformation. The original 
normals are written as 

Aux,+AuXz=b1 

A:ZI Xt +A22Xz= bz 
(3.21) 

and consider a parameter transformation which 
changes x, into y, leaving x, unchanged: 

(3.22) 
x,. 

The inverse transformation is 

(3.23) 
x,. 

The normal equations for the new parameters are 

Yt =St 

A~1Xz= b1P'. 
(3.24) 

If we substitute for y., we get 

Ru X 1 + R 12 X 2 = S1 

Aii' Xz = b1P'. 
(3 .25) 

This is precisely what we get after partial Cholesky 
reduction. We see that hidden behind these equations 
is the system of normal equations involving y., x,. 
This system completely decomposes into two sepa­
rate systems for y, and x,. It follows that the adjusted 
values for y., x, will be uncorrelated. The covariance 
matrix for x, will be 

L(X,)=(A,~')-•. (3.26) 

Let us go back to the original normal equations: 

Ax= b. (3.27) 

If a certain subset of the components of x are .forced 
to fixed values, which amounts to fixing the corre­
sponding coordinates at the values p''' + x, then the 
normal equations for the remaining unknowns are 
obtained as follows: Noting that any equation be­
longs to a certain coordinate, disregard all equations 
belonging to the fixed components. In the remaining 
equations, insert the prescribed values for the x's to 
be fixed, and move these terms toward the right. The 
desired system results. Note that the same procedure 
may be applied to the partially reduced Cholesky 
system 

RuXt+RuXz= St 

AWXz=b'1:1, 
(3 .28) 

provided that the fixing is restricted to coordinates 
out of set x,. This observation allows us to give the 
coefficients r;1, s,, alf>, b)P 1 the following geodetic in­
terpretation. 

( •) alr', i >p, is the reciprocal of the variance of 
coordinate i, provided that the coo~dinates k, 
p<.k.;;n, k*i are fixed, while the coordinates k, 
I .;;k.;;p, as well as coordinate i itself, are allowed to 
vary freely. 

(•) -alJ'Ialr', i,j >p, i*i is the shift, with respect 
to the adjusted position, suffered by coordinate i if 
coordinate j is displaced by one unit from the ad­
justed position, and if coordinates k, p<.k.;;n, koFi,j 
are fixed to their adjusted position, while coordinates 
k, I .;;k.;;p as well as coordinate i itself, are allowed to 
vary freely. 

(•) W'lalr', i >pis the shift, with respect to the 
approximate position, suffered by coordinate i if 
coordinates k, p<k.;;n, k# are fixed to their approx­
imate positions, while coordinates k, I .;;k.;;p, as well 
as coordinate i itself, are allowed to vary freely. 
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(•) r,, i,;;p, is the standard deviation of coordinate 
i, if coordinates k, i<k.;;n, are fixed, while coordi­
nates k, I .;;k.;;i are allowed to vary freely. 

(•) -r,/r,, i,;;p, j >i is the shift, with respect to the 
adjusted position, suffered by coordinate i, provided 
that coordinate j is displaced by one unit from its ad­
justed position, that coordinates k, i <k.;;n, kFj are 
fixed to their adjusted positions while coordinates k, 
I .;;k.;;i are allowed to vary freely. 

(•) s,!r,, ;,;;pis the shift, with respect to the ap­
proximate position, suffered by coordinate i, pro­
vided that coordinates k, i<k.;;n are fixed to their ap­
proximate positions, while coordinates k, I .;;k,;;·i can 
vary freely. 

The last three statements require an additional 
argument because coordinates k, k,;;p are also held 
fixed, while earlier we said that fixing is restricted to 
the second set of unknowns, i.e., those with k>p. 

The three last statements should be clear if we set 
i= p, because then only coordinates k>p are fixed. 
On the other hand, the r/s are no longer subject to 
any change, as p moves on from i to higher values. 
Hence the argument also applies fori< p. 

Remark: (Elastostatic interpretation of normal 
equations before and after partial reduction.) To the 
structural engineer the normal equations Ax= b ap­
pear as equilibrium equations of an elastic system. 
The matrix A is called the stiffness matrix, x are 
coordinate shifts of the nodes, and b are external 
forces acting at the nodes. The coefficients of the 
stiffness matrix have the following physical meaning: 
Suppose that the system is in equilibrium with x= 0, 
b = 0. Displace coordinate j by one unit from its 
equilibrium position, keeping all other coordinates 
fixed to their equilibrium position. An elastic force 
will then be acting on coordinate i. This force is pre­
cisely au. This holds also for i = j. The partially re­
duced normals AW x, = bl"' refer to a so-called stat­
ically reduced system. AW is still a stiffness matrix. 
al)', p<i, j,;;n is the force acting on coordinate iwhen 
coordinate j is displaced by one unit from its equilib­
rium position, when coordinates k, p<k.;;n are fixed, 
while coordinates k, 1 .;;k.;;p are allowed to adjust 
freely. The right-hand coefficients bl'' have the mean­
ing of forces. The original b, = b!'' are nodal forces 
due to inconsistencies in the network. As nodes are 
freed during elimination, different forces bl'' must be 
applied to the remaining nodes such that the equilib­
rium position of the remaining nodes remains the 
same. The forces of the eliminated nodes must be 
transported to the uneliminated ones. Occasionally it 
is also advantageous to consider external forces. If 
the vector b is chosen as the j-th column of the unit 
matrix, the solution x of the system becomes the j-th 

columnj.1 of the inverse F of the stiffness matrix A. 
Hence _t;1 is the shift of coordinate i if a unit force is 
applied to coordinate j. Thereby it is assumed that 
prior to application of the unit force a free equilibri­
um state had been reached. In particular, f,, is the 
shift of coordinate i with respect to its adjusted posi­
tion, if (after adjustment) a unit force is applied to 
coordinate i. A more lucid interpretation of the vari­
ance _t;, of the adjusted coordinate i can hardly be 
given. The ~lastostatic interpretation is thus some­
what simpler and of great physical significance. I 
personally prefer to think in terms of elastostatics, 
where the alf', b,'P' themselves have a most simple in­
terpretation, whereas in geodetic reasoning the ratios 
al)'laN'', b,'P'/aif'' are most easily understood. How­
ever, since this publication is addressed to the geodes­
ist, elastostatic language will very rarely be used in 
the sequel. For further details the reader is referred to 
Rubinstein and Rosen (1970). 

Remark: (On the near vanishing of row sums.) An­
other property of geodetic normal equations which 
will be of some importance to the roundoff study is 
concerned with the row sums 

(3.29) 

of the original as well as the partially reduced nor­
mals. If i is a coordinate whose station-call it P-is 
involved only in relative measurements, i.e. in meas­
urements other than absolute positioning by Dop­
pler, then the above row sum nearly vanishes for any 
p. The row sum vanishes precisely if the network is 
plane. On the ellipsoid it vanishes only approximate­
ly. The proof, for the plane network, goes back to 
the observational equations Bx= Ill+ v. All observa­
tional equations involving station P can be thought 
of as being formulated in terms of differences of 
coordinate increments. This implies that the row 
sums pertaining to station P vanish. The property of 
station P's vanishing row sums carries over from the 
observational equations matrix B to the original nor­
mal equation matrix A =B'PB. Note that station P's 
normal equations can be formed by considering only 
the observations that involve this station. If station P 
is involved in a Doppler measurement, the row sum 
of equation i will not vanish, even if the network is 
plane. However, since the Doppler observations have 
weights much smaller than those of the relative meas­
urements (directions, distances, azimuths), the row 
sum will be appreciably smaller than the larger coef­
ficients in the i-t h. row of A. Hence, we conclude that 
all row sums of the normals are small. The remark at 
the end of section 3.2 tells us that Cholesky's algo­
rithm is a succession of subtractions of multiples of 
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rows from others. Hence the property of near vanish­
ing of row sums is retained throughout reduction and 
carries over to the partially reduced normal equation 
matrix A)P}. 

3.5 Problem of Station Ordering 

Coordinate i is associated with row and column i 
of the normal equations. Ordering the coordinates in 
a different way leads to a system of normal equations 
with rows and columns simultaneously permuted, 
i.e., with diagonal elements permuted and rows and 
columns arranged accordingly. Mathematically, the 
two systems are equivalent, numerically they are not. 
Widely recognized in recent literature are the great 
differences in storage requirement and computation 
time that result from different orderings and when 
algorithms are used that take into account the 
sparseness of A. 

In geodetic networks, nonzero off-diagonal ele­
ments result from observations between stations · 
rather than between coordinates. The problem of 
ordering the unknowns becomes a problem of order­
ing the stations. The two coordinates of one station 
will always be placed together. 

We will refrain from giving a thorough discussion 
of ordering schemes currently in fashion. We shall 
briefly review three ordering strategies. The first 
serves as an introduction to the problem, the other 
two will be relevant to the readjustment of the U.S. 
network. 

3.5.1 Ordering for small bandwidth 

A supposed geodetic network is depicted in figure 
3.1. The solid lines indicate directions observed at 
both end points. Additional distances and azimuths 
(measured along some of the solid lines) as well as 
some Doppler positional observations may be avail­
able. Recall that two stations are connected by 
nonzero off-diagonal coefficients in the normal 
equations if there is a direction-, distance-, or 
azimuth-observation between these two points, or if 
the two points are directionally coobserved from a 
third station. In this way, station I is connected to 
stations 2,3,5,6,8,9. Station 8 is connected to 
1,2,5,6,9,10,12,13,14,17,18,19. For any station i we 
can specify the highest numbered stations, connected 
to station i. Thus s,= 9, s,= 19. We may calculate the 
number 

W=2•MAX(s,-i+l) (3.30) 

which is called the bandwidth of the system. The fac­
tor 2 has been introduced to account for the fact that 
we have two coordinates per station. In our above ex­
ample we would have w= 2(s,-8 +I)= 24. 

B 16 

Figure 3.1.-Sample network. 

It turns out that the normal equation matrix A will 
have nonzero coefficients restricted to a band of 
width was indicated in figure 3.2. Note that w counts 
only lines of coefficients above and including the 
main diagonal. The coefficients below the main 
diagonal are never used. 

Figure 3 .2.-Banded normal equations. 

In general, the band will not be completely filled 
with nonzero coefficients of A. It will also contain 
some zeroes. The important thing to note, however, 
is that nonzero coefficients r;il alP, arising during 
(partial) Cholesky reduction, are also confined with­
in the band. Some of these will appear at places 
where A also had nonzero coefficients, and others 
will take the place of original zeroes. The latter ones 
are called "fill-in" coefficients. 

The proof that fill-in is confined to the band is 
most easily derived from the next to the last remark 
in section 3.2. There we saw that any row of' any of 
the Cholesky reduction states results by subtracting 
multiples of preceding rows from it (and by dividing 
the row by a factor, if if{,p). However, preceding rows 
k, k<i can never have nonzero coefficients to the 
right of the rightmost eligible position for a nonzero 
coefficient of a row i. 

A consequence of the banded structure of A is that 
any one of the inner products, i.e., the sums of prod-
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ucts appearing in Cholesky's algorithm, will have, at 
most, w - I nonzero terms. In fact, the first version 
(3.7) of the full Cholesky algorithm specified in sec­
tion 3 .I can be respecified as follows: 

.j ·~ ru = a .. - 2 rZ,· 
" k=MAX(l,i-w+l) 

,_, 
r.,- (a--- L r,. r, .)/ r .. 
IJ- ,, k:MAX(l,j-w+t) • ') "' 

j=i+ I, ... , MIN(n,i+ w-1) i= I, ... , n (3.31) 

,_, 
s,=(b,- L. r.,s,)lr" 

k:MAX ( l,o-w+l) 

and 
M/N{n,i+w-1) 

x,=(s,- L riix)lr11 J=i+l 
i=n, ... ,l. 

On the one hand, a computer program for this 
algorithm would be more complicated; on the other 
hand, for w< <n, it would be much faster. It would 
save much storage if the coefficients within the band 
were stored in a compacted way, for example, as the 
columns of an array of size w • n. 

A different numbering of the stations would gen­
erally result in a different bandwidth w. One could 
try to minimize w over all possible permutations; 
however, this is not economical. There are computer 
algorithms that find near optimal orderings in a short 
time. Frequently, a good ordering is found by inspec­
tion. If a network is elongated, as in the example 
above, then numbering along the lines that cross the 
network at the shorter distances often leads to a good 
ordering. I believe the ordering specified in the figure 
3.2 is near optimal. 

I 
L ______ _ 

Figure 3 .3.-Profiled normal equations. 

The profile may include zero coefficients. Again it is 
important to note that fill-in is restricted to the pro­
file. The proof relies on a similar argument as previ­
ously given for the banded structure. Subtracting a 
multiple of a row from a subsequent row will never 
cause any nonzero entry outside the profile. The 
Cholesky factorization A = RT R will result in a 
matrix R which has nonzero coefficients only within 
the profile. R, being upper triangular, will have 
zeroes below the main diagonal, whereas A will have 
coefficients implied by the symmetry there. 

NGS computer programs which are currently being 
used to adjust moderately small networks (up to 
about 2,500 stations) rely on ordering for a small 
profile. The ordering algorithm, designed and de­
scribed by Snay (1976), is heuristic and does not yield 
a minimal profile in the strict sense. It will, however, 
establish a fairly small profile in a short time. As will 
be clear later on, the algorithm will also contribute to 
the adjustment of the entire U.S. network. 

3.5.3 Identifying nonzero coefficients for a certain 
3.5.2 Ordering for small profile reduction state 

As pointed out in section 3.5 .I, the saving of com- Before we proceed to still another ordering tech-
puler time and storage comes from the reduced num- nique, we pause briefly and reflect on the problem of 
ber of product accumulations in Cholesky's alga- identifying the nonzero coefficients of A associated 
rithm. It is plausible, therefore, that methods have with a certain reduction state. Assume, for example, 
been designed which aim at minimizing the number that the partial Cholesky reduction has "eliminated" 
of product accumulations in the first place rather stations I to 12, also marked by black circles in figure 
than doing this indirectly by minimizing the band- 3.4. White circles indicate stations 13 to 29 that par-
width. One such method, which is still a compromi_se-------ticipate in the partially reduced system A!f,' x, = b,'' 1• 

between simplicity and efficiency, is ordering for The network is the same as that one in section 3.5, ex-
small profile. · cept that the station numbering now conforms with a 

The profile of a symmetric matrix includes all ele- changed sequence of elimination steps. From section 
ments of a column that are located between the top- 3.4, dealing with the geodetic interpretation of a 
most nonzero element and the main diagonal, inclu- Cholesky-reduced system, we infer that the pattern 
sively. Hence, an element aiJ, i .; j is within the of zero and nonzero coefficients after partial Choles-
profile, if there is an element a" of. 0 for a certain ky reduction up to stationp= 12, inclusively is shown 
k.; i. A typical profile is shown in figure 3.3. in figure 3.5. 
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Figure 3.4.-Sample network with stations .t through 12 
eliminated from normal equations. 

The numbering of rows and columns of the matrix 
A in figure 3.5 refers to nodes rather than to coordi­
nates. Hence the individual entries represent actually 
2 x 2 matrices. Heavily shaded entries represent non­
zero elements of the original normals. Lightly shaded 
areas indicate the fill-in which occurs during partial 
Cholesky reduction up to and including station 
p= 12. Let us give the appropriate argument for a 
few entries. 

(•) Entry (14,21). The shading indicates fill-in. 
Why are nodes 14 and 21 connected at this time? Ac­
cording to section 3.4 (cf., the explanation of the ex­
pression -a!J'Ialr' there), we assume that nodes I to 
12( = p) are free, as well as node 14. We assume the 
other nodes fixed to their adjusted postion, except 
for node 21, which is displaced from its adjusted 
position. The displacement of node 21 will cause the 
direction bundles at the neighboring nodes 25, 26 to 
rotate. As a consequence, the free node 12 will move 
away from its adjusted position, causing in turn the 
bundle in 13 to be displaced rotationally. This bundle 
finally will displace station 14. Hence a'r,:, will be 
nonzero, as was to be shown. (The possibility that the 
resulting movement of 14 is the zero movement is ne­
glected here, as it is in all treatises of sparse 
matrices.) 

( •) Entry (3,8). The shading indicates fill-in again. 
This time we refer to the rule for -r,;f r, given in sec­
tion 3.4. We pretend that only nodes 1,2,3 have been 
eliminated, i.e., we temporarily assume p= 3. We 
further assume nodes 4 to 29 fixed to their adjusted 
positions, except for node 8 which is displaced. This 
causes the bundle in 5 to deviate from its adjusted 
position, which in turn displaces nodes I ,2. The dis­
placement of I and 2 will finally displace node 3. 
Hence r3, 8 must be nonzero, in general. 

(•) Entry (10,13). We may put p= 10. Displacing 
node 13 causes movements of the bundles connected 
to node 13. No movement takes place to the left of 
the barrier formed by the double line of nodes 21 to 
29. Hence the coefficient must be zero. In fact, all 

coefficients (i,j), i<:;ll, 12<:;j<:;20, must be zero. We 
see that a barrier of a double line of nodes crossing 
the network can effectively keep down the fill-in. 
This observation leads us to the ordering scheme con­
sidered in the next subsection. 

3.5.4 Nested dissection 

We have just seen that by appropriately ordering 
the stations we may establish barriers which divide 
the network into parts such that the interior stations 
of one part will never become connected to interior 
stations of another part. The numerical analyst 
George (1973) fully exploited this idea. He calls his 
ordering scheme "nested dissection." As we shall see 
later, this is anticipated to some extent by what is 
known among geodesists as "Helmert blocking." 

Figure 3.6 exemplifies the idea of nested dissec­
tion. The individual stations are not shown here. In­
stead, we see subsets of stations carrying labels I to 4. 
We imagine that these labels are attached to all nodes 
of a particular subset. Nodes carrying label I are 
eliminated first. The sequence in which this is done is 
not of much importance as long as the number of sta­
tions in one connected subset is small. Should this 
number be larger, we may imagine that an ordering 
for small profile is done in each individual subset. At 
the next step we eliminate nodes labeled 2, then 3, 
and finally 4. 

Let us now take a look at the connections a certain 
node labeled i may encounter to nodes that come 
later in the ordering sequence. Such nodes carry 
either the label i or a labelj > i. Connections to label i 
nodes are possible only if the other node is in the 
same connected label i subset. This is true, because 
all other label i subsets are separated by barrier 
subsets of higher labels. Connections of a label i node 
to nodes of higher labels are only possible if the high­
er label nodes are located at a barrier surrounding the 
subset of node i. 

Any node will be connected to only a few nodes 
that come later in the ordering sequence. This is par­
ticularly true at the lower levels. It follows that 
matrix A will be quite sparse, although the pattern of 
zeroes is now rather complicated. 

In order to see the power of nested dissection, we 
imagine a fairly homogeneous network of n stations 
covering a region which is shaped somewhat like a 
square. George (1973) shows that the number of non­
zero coefficients (original A plus fill-in) is bounded 
by 

const, n log n. (3.32) 

If, in contrast to this, we subject the network to 
ordering for small bandwidth, we can bound the 
nonzeroes only by 
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Figure3.5.-Structure of normal equations when stations 1 through 12 are eliminated. 

canst, n ..;n: (3.33) 

Also ordering for small profile could not achieve 
anything much better. Assuming an efficient storage 
scheme, the storage requirement grows roughly pro­
portional to the number of nonzeroes. However, the 
factor of proportionality is different from method to 
method. Nested dissection, in particular, has a more 
complicated pattern of zeroes that necessitates the 
storage of additional pointers to keep track of the 
nonzero elements. 

Despite the different proportionality factors and 
also the difference between canst, and cons!, in the 
above formulas, it becomes clear that asymptotically, 
i.e., as n grows on and on, nested dissection is 
superior. In fact, as n-oo, the ratio of storage re­
quirement for nested dissection and bandwidth tends 
to zero as canst log n !Vii. In this context it is inter­
esting to note that no ordering scheme can improve 
upon nested dissection asymptotically by more than a 
constant factor. · 
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We have argued that the number of nonzeroes is 
directly related to storage requirement. It is also in­
directly related to the amount of computational 
labor. Let us take a look at the number of product 
accumulations necessary for the triangular decom­
position of A. As it turns out, these product accumu­
lations account for most of the computation time 
needed to solve the normal equations by Cholesky's 
method. George (1973) shows that this number is 
bounded by 

const, n Vn (3.34) 

if nested dissection is done. Bandwidth ordering, on 
the other hand, requires 

(3.35) 

for a homogeneous network of the type mentioned. 
Again the asymptotic superiority of nested dissection 
becomes evident. 

We conclude this subsection with a few remarks. 

Remark: Asymptotic superiority of a method 
does not necessarily mean superiority for moderately 
small networks. As already indicated, the exploita­
tion of a complicated pattern of zeroes can cause an 
overhead of storage and computation time. In addi­
tion to nonzero coefficients, overhead storage is 

needed for addressing information which must be 
stored and for storing a more complicated program. 

Remark: Faced with a given network, the subdivi­
sion of nodes into categories of different labels is not 
always immediate. The network will not always be 
rectangularly shaped, and it will not always be possi­
ble to identify a number of first level sets equal to a 
power of 4. In practice, it will be necessary to com­
promise. Occasionally, the connected subsets of sta­
tions of the same label will deviate in number and 
shape from the ideal case shown in figure 3 .6. 

Remark: To avoid pitfalls, one must be sure that 
the barriers dividing the network, as indicated in fig­
ure 3.6, are virtually impenetrable. For the types of 
networks considered, i.e., those involving bundles of 
directions, distances, azimuths, and absolute posi­
tions, the following rule applies. From and to a node 
of label i there may be lines of vision only to and 
from; (I) nodes of an adjacent lower label set, (2) 
nodes of label i which are in the same label i subset, 
(3) nodes of higher labeled adjacent sets. Otherwise 
one will try to keep the barriers as thin as possible. 
Roughly one will arrive at barrier sets composed of 
double rows of points, as already encountered in the 
example of figure 3.4. However, there will be excep­
tions, particularly in the presence of very long lines 
of vision. 

Figure 3.6.-Nested dissection. 
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3.5.5 Helmer! blocking 

Let us briefly review the basic idea of Helmert 
blocking for the small network shown in figure 3.4. 
We reproduce the network in figure 3.7. The dashed 
line separates two blocks. The nodes marked by sim­
ple circles are interior to the relevant block. The 
nodes marked by double circles are junction nodes, 
forming a barrier between the two blocks. The nor­
mal equations are assembled separately for each 
block: 

Block I: [A, B,J [x'] =[a'] 
B.11 B.1.1 x, b, 

(3.36) 

Block 2: [A" C,.,J [x'] = [a,] 
C32 C33 X3 C.1 

Here x, x, denote the coordinates of the stations in­
terior to blocks I, 2, and x, denotes the junction sta­
tion coordinates. Observations between interior sta­
tions of block I contribute to the block I equations. 
Observations between stations interior to block I and 
junction stations also contribute to it. A similar state­
ment can be made for block 2. Observations between 
junction stations contribute to the block in which the 
instrument was positioned. In this context note that 
the dashed line attributes uniquely a block to any sta­
tion. 

Adding the two systems of normal equations 
would result in the conventional normals for the en­
tire network. However, elimination starts for each 
block separately. The unknowns x, x, are eliminated 
from the two systems by partial Cholesky reduction: 

Block I: [R, R,J [x'] =[ s, J 
Bj~l XJ bjPl 

Block 2: [Q" Q..,J [X']= [ I, J 
ca> x3 c.tq) 

(3 .37) 

The two partially reduced systems for the unknowns 
X.o are taken out and added: 

{B"'' + C'"} x = {b'''' + c'''}. .B J.l .1 .1 .1 (3.38) 

This system is solved for x,. Back substitution into 
the two above systems yields x, x,. 

The solution is equivalent to the solution of the 
normals for the entire network. The proof of equiva­
lence is fairly simple. During the partial Cholesky 
reduction modifications to the coefficients pertaining 
to x3 , i.e., t.o B33, b.1, CJJ• c.1 are made only by adding 
to or subtracting something from them. Because the 

Figure 3.7.-Sample network decomposed into two Helmert 
blocks. 

quantities added or subtracted are the same as they 
would be if the entire system were partially reduced, 
it is irrelevant whether the equations for x, are added 
before or after the partial reduction. 

A larger network will be partitioned into more 
than two blocks. A hierarchy of blocks can be 'estab­
lished that is similar to the nested dissection pro­
cedure. In fact, one can view figure 3.6 as a Helmer! 
blocking scheme. There are as many first-level blocks 
as there are sets labeled I, i.e., the number is 64. The 
normal equations are formed for each first level 
block separately. Higher labeled nodes situated in ad­
jacent barrier sets take part in the normal equations 
as junction nodes. The dashed lines separating the 
first-level blocks have to be imagined as bisecting the 
barrier sets between the sets labeled I. All observa­
tions must be used in forming the normals, and any 
observation must be used only once. 

The interior nodes are eliminated from the first­
level blocks. The partially reduced normals for the 
junction nodes of four adjacent earlier first-level 
blocks are added to form the normals of a second­
level block. In such a second-level block the nodes 
labeled 2 now play the role of interior nodes. The 
junction nodes have labels higher than two. There are 
16 second-level blocks. The number of blocks has 
been reduced by the factor of one-fourth. The in­
terior nodes are eliminated from the second-level 
blocks, etc. Finally at the fourth and last level we 
deal with a system involving only the nodes labeled 4. 
We solve this system for the coordinates of these sta­
tions. Back substitution cascades down through the 
previous levels and successively yields the coordinates 
of the lower labeled stations. 

What is the difference now between Helmer! 
blocking as described here and nested. dissection? Not 
much. In fact, Helmer! blocking is slightly more 
sophisticated because the normals are not fully 
formed before reduction starts. Instead, the normals 
are formed separately for each first-level block. After 
partial reduction at any level, normals of a number 
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of blocks are merged by adding them. These opera­
tions have to be viewed as part of the formation of 
the normals rather than part of the solution process. 
This, by the way, conflicts somewhat with the defini­
tion of our goal, namely to analyze the roundoff er­
rors arising and accumulating during the solution of 
the normal equations, assuming that the normals 
themselves are error- free. We will, therefore, rede­
fine our goal so as to assume that the first-level nor­
mals are assembled error-free. Roundoff errors will 
be taken into account during the process of merging 
the partial normals of adjacent blocks. However, the 
infiuence of these errors will be marginal. 

Returning to the interplay between Helmer! block­
ing and nested dissection, George (1973) pointed out 
that substantial savings are realized in computer time 
and storage associated with the peculiar way of com­
bining four i-level blocks to form one i+ !-level 
block. Although Heimerl blocking has been widely 
used by geodesists, I do not know of any reference 
where it has been-done by nested dissection. Instead, 
in most cases, only two levels have been considered. 
Helmer! or his geodetic followers did not appear to 
anticipate George's logarithmic law. 

The U.S. network will be adjusted by the Helmer! 
blocking technique. Partial reduction at the inter­
mediate block level, as well as the reduction of the 
last level system will be done by Cholesky' s method. 
First-level blocks will be ordered individually for 
small profile. Higher level blocks will also be ordered 
to some extent, but ordering becomes less significant 
as the systems tend to become less and less sparse. 

4. ROUNDOFF ERRORS FOR A GENERAL 
POSITIVE DEFINITE SYSTEM 

This chapter describes the general strategy of our 
roundoff error analysis. In order not to blur things 
with details, we first assume that a full Cholesky 
reduction is done for a positive definite system. As 
described in section 3.2 the NOS algorithm is as­
sumed with the understanding that p= n, in which 
case partial reduction amounts to full reduction. 

4.1 Roundoff Errors During the Triangular 
Decomposition Phase 

The global effect of roundoff errors arising during 
the triangular decomposition phase will be studied by 
means of backward analysis. (See sec. 2.7 .) The local 
roundoff errors encountered during triangular de­
composition will be traced backward to the original 
equations Ax = b. A and b will then be perturbed by 
£, ~. so that the following perturbed system results: 

(A + E) (X + C) = b + ~- (4.1) 

The perturbation effect C on the solution x will be 
calculated in linear approximation as 

(4.2) 

Mean and covariance of £, ~ will be estimated based 
on the assumptions made in chapter 2. The mean and 
covariance of C will be estimated from some a priori 
knowledge of A-•, x. 

4.1.1 Left-hand-side local roundoff errors arising 
during triangular decomposition 

The most serious left-hand-side roundoff errors 
occur during the calculation of the expressions: 

(4.3) 

According to the NOS algorithm specified in section 
3.2, eq. (3.15), the sequence of operations is such 
that the first sum 

(4.4) 

is calculated and subsequently subtracted from au. 
During this calculation elementary errors and their 
aftereffects will cause a local error <if' to affect a!t''. 
The superscript (p) stands for "product accumula­
tion.'' Starting from assumedly correct values for a,.;. 
rk .. , '".i' we will actually calculate · 

(4.5) 

Our main problem in this section will be to esti­
mate the mean and standard deviation of <if' and 
some additional local errors. But let us first take a 
look beyond this goal and appreciate the benefit of 
backward analysis. We write the above expression as 

i-1 

(au + £.,~!! 1 ) - ~~ '"' rlci· (4.6) 

The task of tracing the error backward is clearly triv­
ial. We may simply replace the coefficient a,1 of the 
original normals by a,; + Elf'. In the case of i1'} we 
must take symmetry into account and also replace a0 

by 0,;; + £~] 1 , i.e., we must superimpose dJ 1 on a;; as 
well as on a;,. 

Let us now turn to the task of estimating <il''. 
E{<W'}, o{Elf'}. The local error <If' results from the 
equation 

Here £iN denote the elementary errors encountered 
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during the multiplications rk,rkj; r.U;/ denote the 
elementary errors during the additions of r.,r"' to the 
previously accumulated partial sum (obviously £)/( 
= 0); and <li' denotes the elementary error of sub­
tracting the fully accumulated sum from au. We see 
that df' is represented as 

Recall from section 2.8 that we assume the elemen­
tary roundoff errors to be independent random vari­
ables. Hence <lf' is the superposition of independent 
random variables. 

It follows at once that E{<lJ'} = 0, for a truly 
rounding machine and also for the CDC 6600. 
Hence, on such a machine <lf' is unbiased. We shall 
see later on that this is a great advantage. 

Let us estimate the mean and standard deviation of 
<,\'' by taking a look at the mean and standard devia­
tion of the elementary roundoff errors composing it. 
In agreement with section2.8, we have 

E{<lj1} = 0 on the CDC 6600 

on the IBM 360 (4.9) 

(•) 

{ <•>j ~ c,;, {3-' in any case. 
0 E.ij/c 0:::::, V12 

Thereby eli,! is the smallest integer power of the base 
{3 bounding I r,;r,J 

(4.10) 

In view •of the remark at the end of section 3.2 con­
cerning another version (3.16) of Cholesky's algo­
rithm, we can also write 

(4.11) 

In the case of <lN, (4.9) holds with clj,! replaced by 
c~;t'. This is given by 

k-1 k 

c,<,:' = f3' >MAX{ I,~, r,. ru[, I,~, r,. rul, [r.,r,J!) = 

= MAX{ [a,1 - alj-"[, [au- alj'[, [alj' - alY"[}. (4.12) 

Similarly 

( 4.13) 

Since <lJ"' is given by (4.8) as the sum of independent 
random variables, we get 

E{<l~'} = 0 on the CDC 6600 

on the IBM 360 
(4.14) 

in any case 

Here /A;; denotes the number of nonzero product 
terms in the product sum (4.4). Twice this number 
gives the number of elementary operations during the 
calculation of (4.3) that may cause a nonzero round­
off error. The constant clJ' is given by 

cW' = [Jr = 

j 

I if, r., r,1[, £ = I, ... ,i-1}. (4.14a) 

Note that the bound on the bias E{<lJ') grows in pro­
portion to /Au• while the bound on o{<lf'} grows in 
proportion only to the square root of this number. 

Remark: Our formulas overestimate E{<i'l'}, 
o{<lJ'}. Let us review the reasons for this. (I) The ba­
sic formulas of section 2.8 are already overestimates. 
(2) In the product-sum accumulations we bound all 
the elementary roundoff errors in terms of a single 
quantity cl;', which will overestimate most of the 
quantities to be bounded. In particular, many of the 
individual product terms r.,.r,1 will be much smaller 
than a,1• We shall return to this in section 9.4 and im­
prove the estimate of the U.S. network based on bet­
ter insight into the behavior of the coefficients of the 
reduction states. (3) E{<lJ'} is overestimated because 
the summands contributing to it will, in general, not 
all be of equal sign. Accordingly, there will be some 
offsetting of biases. 

We proceed to other roundoff errors occurring 
during the triangular decomposition phase. There is 
the local roundoff error encountered while taking the 
square root of a)f-11 = Zlu - L rki rk, (the sum is ex­
tended from k= I to k= i-1). With an eye toward 
backward analysis we define this error in a slightly 
different way from section 2.8, namely such that the 
faulty square root is actually the precise result after 
taking the square root of the faulty radicand ay-• 1 + 
<l:'. We then may conveniently trace the error back 
by assuming an additional perturbance <if' of the co­
efficient a, in the original system. 
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In agreement with the assumptions given in section 
2.8.3, we estimate<!:' as follows: 

{Jv > f·· = J a~-~-~~ 
II U (4.15) 

c!i' = 2 r,., [J•. 

Then 

E{<ii'} = 0 on the CDC 6600 

c!'' IE{<!I'}I .; T fJ-• on the IBM 360 (4.16) 

Finally we deal with the errors occurring during the 
divisions ru = a\t"lr,... Again we shall define the er­
rors in such a way that r,1 is the precise result of 
dividing(alj-" + df') by r.._.. Hence, let 

(4.17) 

Then 

E{<\f'} = 0 on the CDC 6600 

cld> 
IE{<\1'}1 .; T fJ-• on the IBM 360 (4.18) 

cld> 
a{<\1'} .; . ~ fJ-• in any case. 

. v 12 

4.1.2 Right-hand side local roundoff errors during 
triangular decomposition 

Right- hand side local roundoff errors will be 
analogously defined in such a way that they may be 
viewed as perturbances of the right- hand side of the 
original normals. In view of the similarities to the 
previous section, we can shorten the presentation 
considerably. 

The local errors ry..''' occur during the product sum 
accumulation 

i-1 
b<,_,' = b. - L r .s 

' ' """' "' k• 

The right-hand side will be falsely evaluated as 

(4.19) 

(4.20) 

Define 

d\'' = fJ' > (4.21) 

MAX{Ib,l,lb\'-"l.lr..-s,l, k=1, ... ,i-1, 
I 

I~. r,..s,l, £=1, .. ,i-1}. 

Let v, denote the number of product terms r,..s, that 
are different from zero. Then 

E{ryl''} = 0 

IE{ryl''ll .; d;"' <2v,) [J~· 

on the CDC 6600 

on the IBM 360 
(4.22) 

in any case. 

Remark: In our quick arrival at (4.22) we have 
jumped over a detailed consideration of the individ­
ual elementary roundoff errors ry~Z 1 , Y/;~+>, YJ!->, which 
could be introduced and analyzed completely parallel 
to the line of thought leading from eq. (4.8) to eq. 
(4.14a). Thus d..'''' could be defined as 

di'''= MAX{dA'', d,~•>, k=1, ... ,i-1, d..'-'} (4.23) 

with dA'', d,~•>, d,<-> defined in analogy to (4.10), 
(4.12), (4.13). 

The local errors rtf' occur during the divisions s, 
w-• 'I r,... We define them such that 

is the faultily evaluated result. Let 

fJ' > s, 

Then 

E{ryld'} = 0 on the CDC 6600 

(4.24) 

(4.25) 

d(d) 

IE{ryJdl}l .; T fJ-• on the IBM 360 (4.26) 

d{d) 

a{ryl"} .; . ;.,.,. fJ-• in any case. 
v 12 

4.1.3 Global roundoff errors caused by triangular 
decomposition. 

We combine the local roundoff errors introduced 
in the previous subsections as 
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(4.27) 

These errors ,,1, '1• should still be considered local. 
Their mean and standard deviation can obviously be 
estimated as 

IE{eu)l <;; IE{£1)'')1 + IE{elj'}l + IE{elf')l 
(4.28) 

a{£u) = V a'{£1J') + o'{elj'} + o'{•lf') 

IE{'I,)I .;; 1£{'11'')1 + IE{'Ii"ll 
(4.29) 

o{'l,) = Vo'{'li''') + o'{'li"). 

It is important to note that the £,1, l<;;i<;;j<;;n, as well 
as fJ,·, 1 <..i:::::..n, are mutually independent random vari­
ables. We form the symmetric matrix, = (eu) and the 
vector '1 = ('1,). The original system is then con­
sidered as being perturbed so that 

(A + £) (x + ~) = b + '1· (4.30) 

As we have pointed out repeatedly, the perturbance ~ 
of xis given in linear approximation by 

(4.31) 

We now denote the elements of the inverse A -• by /;1 : 

A-• = (/;,). (4.32) 

We may then expand the formula for~ as: 

(4.33) 

Since £u = E.p, we occasionally prefer to write this as 

'=-f. rx, .. -f. f. (~·X,+ ',x)•·· + .,, .i=l li.l :J )) j=l k::;i+l li.l }i :J ) 

i= 1, ... ,n. (4.34) 

This formula exhibits~' as a sum of independent ran­
dom variables. Mean and covariance of~' can now be 
calculated as 

Eg,) = 0 on an unbiased machine; 
otherwise we have 

E{~,) = -i i f,,x,E{£1,) + i f,,E{'IA 
;=I k=l · .i=l · 

+t,tJo'h) 

(4.35) 

(4.36a) 

Cov (~, .. ~,,) = i '· 1 1". . x' o' {£ .. ) + .i=l}il Ji2J .I JJ 

4.1.4 

(4.36b) 

Preliminary estimates of the global roundoff 
errors in the U.S. network caused by triangu­
lar decomposition 

Taking certain shortcuts and anticipating some 
results to be derived in chapters 5, 6, and 7, we will 
specify preliminary estimates of the global roundoff 
errors suffered by the coordinate shifts of the U.S. 
network during the first iteration of the adjustment. 

The estimates derived here are rather simple. On 
the other hand, they are rather crude. They are suffi­
cient to indicate the feasibility of the adjustment on 
the CDC 6600. More refined methods will have to be 
used in order to prove that the bias encountered on 
the IBM 360 will allow an adjustment on this ma­
chine without special precautionary measures. 

Suppose that a bound llfll is available on the 
elements/;, of A-•: 

llfll = MAX {[!;J!) = MAX {f,,). 
'•·' ' 

(4.37) 

Assume that a similar bound is available on the 
elements of x: 

llxll = M1X {lx,l). (4.38) 

Suppose that c is a bound on all the quantities c!N 
c,~:;,>, c.~->, c1j>, cJj>, involved in bounds on elementary 
roundoff errors during the transition from a,_, to 
ag-'>: 

(4.39) 

Here we also count the square root as an elementary 
operation. 

Then, by introducing a similar global bound for 
the right- hand side elementary roundoff errors: 

d = M~X{di:>, d;';.+>, k= I, ... ,i-1, 
'"'"" 

d,<-•, d!d'). (4.40) 

Now focus attention on one particular elementary 
roundoff error, call it £1~''. This error enters equation 
(4.34) via the local error £1, of which it is a summand. 
It follows that the global effect~' (•):' ') of •J:" is given 
by 
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(4.41) 

As a consequence, we can bound the bias and stan­
dard deviation of l;, (<N''l as follows: 

IE{l;,(<X")}I <; cllfllllxll [J·• ... allj,k (4.42) 

a{l;, (<1~")) <; ..1£.._ llfllllxll {J~ ... all}, k. (4.43) vrr 
Similarly, for right-hand side errors we get 

IE{l;, (>Ji""l}l " ~ llfll [J-• 

a{l;, (>Ji"")}.;.:!,., llfll [J·•. 
v 12 

(4.44) 

(4.45) 

All that remains is to count how many elementary 
operations are performed. Elementary operations 
with results that are known to be zero as a conse­
quence of the sparseness of A can be excluded 
thereby. By n, we denote the number of entries (i,J), 
i <; }, such that aij'' ;" 0 for some p, 0 .; p < i. We call 
n the number of nonzero locations. A nonzero loca­
tion has either au ;< 0, or a fill-in occurs in the loca­
tion (i,j). Referring to the quantities flu, introduced 
in section4.1.1 (cf. eq. (4.14)), we also have 

n = i .... + n. i=l ,.. .. 
(4.46) 

By I we denote the number of elementary opera­
tions needed to triangularize the matrix A. We note 
that 

I= (2flu + I) (4.47) 

with the understanding that flu = 0 for a zero loca­
tion. Finally we note that the number of elementary 
operations needed to reduce the right hand side does 
not exceed 2n. 

Summing over all elementary roundoff errors dur­
_ing triangular decomposition, we arrive at the follow­
ing estimates: 

E{ l;,) = 0 ... on the CDC 6600; otherwise: 

IE{l;,}l .; {c llfllllxll r + ~ llfll2n} [J·• (4.48) 

a{l;,}<;{ 4c' llfll'llxll'l+ d'llfll'2n} v,[J-•. 
12 12 

It will now be our task to specify numerical values 
for the various quantities occurring in these for­
mulas. In the case of c, we will derive a slightly more 
general result than will be needed immediately. It will 
be of use in chapter 8, where more refined estimates 
will be obtained. 

Proposition 4.1. Suppose that llall is a bound on 
the elements of the matrix A. Let c denote the small­
est integer power fJ' bounding II all. It then holds that 

(4.49) 

Proof: Due to the positive definiteness of A, as 
wellasofAW, wehavelaul <; MA.Xa,, andlalf'l <; 

' MAX a!!''. Because A,- A'fl is definite (this matrix 
is given by the product A, A 0: A., !), it follows that 
a, ;;, a!:''. This is also clear from Cholesky's algo­
rithm, because 

(4.50) 

Examining the bounds c1)1, cUi', c;)-1, which were 
defined in (4.10), (4.12), (4.13), we see that the first 
part of the proposition is proved if we can show that 

lalf' -all'l.; llall- (4.51) 

By virtue of Cholesky's algorithm (cf., version (3.15) 
in section 3 .2) we have 

(4.52) 

Applying Schwarz's inequality, we further bound 
this as 

" p MAX { L rf,, L rl,) = 
k=q+l k=q+l . 

= MAX {laW'- al?'l , laJJ'- ajJ'I} <;II all- (4.53) 

Hence the first part of the proposition is shown. 
The proof of the.second part is shorter. We restrict it 
to c):'. According to (4.15), we have to look for a 
bound of r, = 1/ ali''' which is an integer power of 
{J. If c = fJ' bounds II all, then either the expression 
fJY12 or the expression [JC'r+llll bounds VaN-'', depend­
ing on y being even or odd. Again by ( 4.15) this 
bound must be multiplied by 2r,. The result is 
bounded by2{J""'" = 2V(fc, as was to be shown. 
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Recall from the remarks at the end of section 3.4 
that a,. is the reciprocal variance of coordinate i if all 
the other coordinates are fixed. Hence, in a way a,. 
measures the accuracy of coordinate i with respect to 
the coordinates of the neighboring stations. Faced 
with a certain network, one will have a priori knowl­
edge of what this accuracy will be. In the case of the 
U.S. network this accuracy may be very high at sta­
tions where very precise distance measurements have 
been taken. There are many such stations, because 
the distances to the reference marks are frequently 
measured with an rms error of 1 mm. Hence C is 
very large for the U.S. network. It is about 10' to 
10' m-'. As one of the biggest sources of trouble, we 
will be concerned about it in chapter 7. To determine 
c properly, scaling considerations are involved, 
which are explained in chapter 8. As argued in sec­
tion 8.2.1, we may take c = 5•10' for both ma­
chines. Then c = 14•10' on the CDC 6600 and c = 
4•10' on the IBM 360. 

Our next concern is for llfll, the element bound for 
the inverse A -•. Of course, one may take llfll as the 
largest variance of any adjusted coordinate. A priori 
estimates of this variance are not too difficult to ob­
tain. Much literature exists on the mathematical 
structure of the covariance matrix of large regular 
adjusted networks. There are methods to estimate the 
covariance to such a degree of accuracy that the re­
quirements of a roundoff analysis are easily met. An­
ticipating the developments in chapter 5, we can 
already indicate that llfll is close to 0.25 m' for the 
U.S. network. This corresponds to an rms accuracy 
of V 0.25 = 0.5 m. 

The reader may be surprised that our formulas also 
require an a priori estimate of the solution vector x. 
Actually only a rough estimate of the largest compo­
nent of x is required. For the U.S. network a few 
coordinate shifts are expected to exceed 10 m. Even if 
such a priori information were not available, our for­
mulas would not be completely useless. The formulas 
still predict how many significant digits of the solu­
tion vector's largest component would be saved, i.e., 
remain unperturbed by roundoff. 

We now turn toward d, the bound on the right­
hand side quantities di'', di". Part of the quantities 
that are to be bounded by d are the original right­
hand-sides b, and the partially reduced right hand 
sides bi". From the discussion in section 3.4 we 
know that b.''' I ail'' is the shift of coordinate i away 
from its approximate position provided that coordi­
nates k, k>p, k•Fi are held fixed to their approximate 
positions and coordinates k, k<;.p, k= i are allowed to 
adjust freely. We stay on the safe side if we take the 
maximum shift of 10 m together with the maximum 
value of a,., which gives us 5•10'. We arrive at d = 
5•10'. 

Other quantities that must be bounded by dare the 
sums 

(4.54) 

These sums are actually the differences between b, 
and bl1

'. Hence, we cover this case as well if we dou­
ble the bound d. We arrive at d = I 0'. We must still 
take into account that d is understood as an integer 
power of the base (J bounding all quantities in ques­
tion. We stay on the safe side if we take d = 2•10' on 
the CDC 6600 and d = 16•10' on the IBM 360. 

To obtain a rough idea of the size of n and r, we 
imagine a network of some 200,000 stations homo­
geneously covering a square region. There are 
V 200,000 = 450 stations across the network. If we 
assume that minimum bandwidth ordering is per­
formed, we find that a typical ·node is connected to 
about 2•450 = 900 other nodes forming a barrier 
across the network. Taking into account that any sta­
tion has two coordinates, we arrive at a bandwidth of 
2•900 = 1800. For a system of n equations and band­
width w, r grows asymptotically as 

(4.55) 

(This is n .. . number of equations, times w . .. number 
of coefficients per equation, times w/2. . . average 
number of product sum accumulations per coeffi­
cient, times 2 ... since a multiplication and a summa­
tion is involved.) In this case we get r = 
400,000•1800' = 1.3•10". In a later section we shall 
see that, as a result of the inhomogeneous distribu­
tion of the stations and the beneficial effect of 
Heimerl blocking, we actually have r = 1.2•10". 
The number n is about n •w = 7 .2•1 0' for the homo­
geneous network, whereas it decreases to about 
1.4•10' for the real network. 

Inserting these numbers into our formulas (4.48) 
for Eg;}, o{~,}, for the CDC 6600 we get 

E{~,} = 0 (4.56) 

oK} = [4•(14•10')'/12 • .25' •10' • 1.2•10" + 
+ (2•10')'/12 * .25' •2 * 1.4•10']" ·2-" = 

= (7.0•10")' + (2.4•I0")']" •2-" = 

= 0.025 m 

whereas for the IBM 360 we get 

IE{~,}I<;. [4•10' * .25 * 10 * 1.2•10" + 
+ 16•10'12 * .25 * 2 * 1.4•10'] •16-" = 

= [1.2•10" + 5.6•10"] * 16-" = 
= 167m (4.57) 
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o{~,j<; [4• (4•10')'/12 • .25' • 10' • 1.2•10" + 
+ (J6•10')'/J2 * .25' •2 * J.4•J0'jM * 

16-14 = 

= [(2.0•10")' + (1.93•10")']~. 16-" = 

= 0.00028 m. 

We know already from these crude estimates that 
the CDC 6600 is a safe machine on which to perform 
the adjustment. On the IBM 360, the bound on og,J 
is small enough, but the bound onE{~,) is larger than 
the expected shift. Refined estimates of E{~,) are 
therefore necessary. 

Remember that the adjustment will be iterated at 
least once for reasons of nonlinearity. At the second 
iteration, the shifts will be much smaller, as will be 
the right- hand sides and, therefore, also the roundoff 
errors. 

4.2 Roundoff Errors During Back Substitution 

The roundoff errors arising and accumulating dur­
ing the back substitution phase 

x, = (s, -,~ .. rux,)/r,, i=n,n-i, ... ,2,1 (4.58) 

will also be treated by backward analysis. However, 
local errors will not be traced backwards all the way 
to the original equations Ax = b, but rather to the 
triangularized system Rx = s. It will be possible to 
trace the errors backward to the right-hand side only, 
so that we will be faced with the perturbed system 

R (x + ~) = s + ry. (4.59) 

We use the same symbols ~.ry for the errors of back 
substitution. In linear approximation, the perturba­
tion~ of xis given by 

~ = R-• ry. (4.60) 

In the case of the U.S. network, R and R-• have 
elements that are very different in size. This per­
suades us to split R to: 

(4.61) 

Here R, is the diagonal matrix composed of the 
diagonal elements r, of R. Accordingly, RG is an up­
per triangular matrix whose diagonal elements equal 
I, while the off-diagonal elements are given by r,.lr,. 
RG and RG' will have elements that are much more 
uniform in size. The above equation for~ is rewritten 
as 

(4.62) 

This prompts us to redefine ry as 

fl.,,.,. = Rtl rJ,,,,. (4.63) 

Hence we replace the equation for I; by 

(4.64) 

writing11 forYJ,,.,.. from now on. 

4.2.1 Local errors during back substitution 

As in the triangular decomposition phase, we are 
led to introduce local errors for the product-sum ac­
cumulations in 

(4.65) 

The result of calculating this by means of rounding 
machine arithmetic will be the same as if a precise 
calculation is done on the basis of s, being perturbed 
by r,., YJ~1·J: 

S· + f·· ~"~\1' 1 
- f r;.; x.,·· I H 'p _i=i+l 

(4.66) 

The factor r, in front of 11!''' results from our 
redefinition ofry. Then d)''' is defined by 

f;; d}'' 1 = w > 

(4.67) 

Further, let v, denote the number of nonzero coeffi­
cients r, in row i of R. We then have 

E{YJl'''} = 0 on the CDC 6600 

d(J>) 

IE{ryl'''ll .; T (2 v,) iJ-• on the IBM 360 

d(J>) 

o{YJl''')<; . ;.,.. ...r2V, iJ-• in any case. 
v 12 

(4.68) 

The remaining step is an analysis of the elementary 
error of the divisions by r,. Assuming that the divisor 
and quotient are correct, the faulty result of the divi­
sion is assumed to be the correct result of 

(4.69) 

The quotient should be x,. We therefore define d!'" 
by 

r, d!'" = r, /1' , /1' > lx,l 
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i.e.' 
d!'" = /3' > }xJ (4.70) 

Then we get 

E{ry!'"} = 0 on the CDC 6600 

on the IBM 360 

in any case. (4.71) 

4.2.2 Global roundoff errors resulting from back 
substitution 

We combine the local roundoff errors treated in 
the previous subsection 

(4.72) 

Again, by applying the rules for adding two inde­
pendent random variables, we will have the mean and 
standard deviation of ry,: 

}E{ry,}}..; }E{ryi'' 1}} + }E{ryi'"}} 
4.73 

o{ry,} = V o'{ry!'' 1} + o'{ryi'11 }. 

The ry,, in turn, are independent random variables. 
They form the vector ry. As we know, the global dis­
turbance~ of x follows from 

~ = R;! ry. (4.74) 

We denote by g., the elements of R;! 

R;! = (g,,). (4.75) 

Then 

E{~,} = 0 on the CDC 6600 

E{ ~.} = f g., E{ry,} ,:, on the IBM 360 
(4.76) 

oR,} = ,~ Q !, a' {ry,} 

Cov{~ •••. ~.,,} = '~"·~u, .. ,,e.,,g,,,o'hl 

. . . in any case. 

4.2.3 Preliminary estimates of the global roundoff 
errors in the U.S. network resulting from back 
substitution 

As discussed in section 4.1.4, we now take & pre­
liminary look at the U.S. network and try to get a 

crude estimate of the global roundoff errors, caused 
by back substitution, and suffered by the coordinate 
shifts after the first iteration. 

Again we take the chance of grossly overestimating 
things and use a single bound don the various quan­
tities d) '· As in section 4.1.4, we go back to the 
elementary roundoff errors and argue that the con­
tribution of any elementary roundoff error ry''" 
toward Eg,} is bounded by 

(4.77) 

Here II Q II is a bound on the elements 1/;; of R;J. 
Counting the elementary operations, we find no 
more than 2n. Hence we get 

and similarly (4.78) 

Chapter 7 will demonstrate that we can take d = 
llxll, II ell = I. Although these bounds are not quite 
strict, they will hold for most of the elementary oper­
ations counted in the number n. The resulting errors 
are quite small. On the CDC 6600 we get 

E{~,} = 0 
(4.79) 

o{~,}..; 1.7•10-'" m. 

On the IBM 360 we have 

}E{~,}}..; 1.9•10-' m 
(4.80) 

og,}..; 6.7•10-" m. 

4.3 Taking into Account Helmert Blocking 

Recall that all preceding derivations in section 4 
were made under the assumption that a full Cholesky 
reduction is done in one sweep. What modifications 
will occur now if reduction proceeds according to the 
Heimerl blocking scheme? They are rather minor. As 
we argued in section 3.5.5, Helmert blocking implies 
a certain favorable ordering of the stations. This 
ordering will make n, i.e., the number of nonzero 
locations, small. Also I will be kept small; herice the 
favorable effect on roundoff error propagation . 

Aside from its implications on station ordering, 
Helmer! blocking introduces modifications of the 
computer algorithm that must be examined. First, we 
observe that instead of calculating the sums of prod­
ucts in expressions like 

i-1 

alt• 1 = au - ~~ rkirkj (4.81) 
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in' one sweep and subtracting them afterwards from 
a,;. the sums of the products are now computed in a 
number of steps. At the end of any step a certain par­
tial reduction at a certain block level comes to its end, 
and the calculated segment of the inner product is 
subtracted from a previously partially reduced coeffi­
cient. The result is a new coefficient which, for the 
inner nodes, is almost fully reduced, while for the 
junction nodes it is again only partially reduced. 

The number of operations needed to calculate the 
product terms rki,kb to accumulate them, and to sub­
tract the accumulated sums, is the same whether the 
normals are solved in one sweep or whether they are 
subjected to Helmer! blocking. Additional opera­
tions are required when blocks are combined. 

After the partial reduction of a number of adjacent 
blocks of level i, the partially reduced normals of 
their junction nodes are added to form the normals 
of an i+ !-level block. This causes additional opera­
tions as compared to the reduction in one sweep. 
Although one could argue that these additional oper­
ations are part of the process to form the normal 
equations, rather than part of the process of solving 
them, we agreed in section 3.5 .5 to include the 
roundoff errors of these additions in our error 
budget. 

For a large number of nodes, i.e., the first-level 
nodes, there are no additional operations at all. Let 
us now concentrate on an i-th level node. We call 
such a node "regular" if it is not situated at the 
center of a typical four-lobed set of the i-th level and 
if it is not situated near a spot on one of the four 
lobes where a lower level set touches; (see fig. 4.1 and 
fig. 3.6 in section 3.5.4.) Clea~ly, the majority of 
higher level nodes will be regul!!r. It is remarkable 
that for any regular node only one additional opera­
tion per nonzero coefficient is susceptible to a 
roundoff error. This operation is an addition taking 
place when the partially reduced normals of the two 
adjacent i-1-level blocks are added. For other than 
regular nodes more operations may be required, but 
their number would never exceed three. Shaded areas 
in figure 4.1 indicate the locations of such nodes. 

4.4 Effect of Scaling the Normals on Roundoff 
Error Propagation 

In this subsection we follow another sidetrack. 
Consider the problem of applying scale factors to the 
unknown parameters. It is occasionally argued that 
such scaling can improve numerical stability. This is 
a myth for the direct elimination method done in 
floating point arithmetic, as it is also clearly stated in 
Jennings(l977, p.!!5 etseq.) 

If we change the scale of the unknowns x in the 
normal equations 

Figure 4.1.-Regular (unshaded) and exceptional (shaded) nodes 
in nested dissection. 

Ax= b (4.82) 

we replace them by new unknowns x, according to 

X= Mx. (4.83) 

Here M is a diagonal matrix of scale factors, M = 
diag(m, ... , m"). The scaled normals are 

with (4.84) 

A=MAM, b=Mb, x=M-•x. 

The matrix A has elements a,1 = m,m1a,1• The vector 
b has components b, = m,b,. The solution of the 
scaled and unsealed equations are related by x, = 
x,!m,. 

First suppose that the scale factors are all integer 
powers of the base fl. We assert that under this condi­
tion scaling has no influence on rounding. More pre­
cisely, the global roundoff errors Cl of the two 
systems are related by the same transformation as the 
unknowns: C = M~, c, = ml,. The proof for this 
assertion follows from the observation that all float­
ing point numbers occurring in the original and the 
reduced normal equations of the two systems have 
identical mantissas. Only the exponents differ; but 
they are integers, and, therefore, not subject to 
roundoff. It can be shown by induction that the fol­
lowi"ng identities hold· a-.cpJ = m-m.a.C.vl jj!P 1 = m.b\P 1 

0 1) IJIJ,l 111 

~~---------------------------------------
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r,j = mj riJ• S; S;. We will refrain from giving a 
formal proof. The reader can verify this relation by 
solving a 2 x 2 normal equation system using decimal 
numbers. If the system is scaled by m, = 10, m, = 
100, and solved again, the same sequences of digits 
appear at corresponding numbers and only the posi­
tion of the decimal point changes. 

Consider now the case where the scale factors are 
not integer powers of base fl. Deviations in the 
roundoff will then occur. In fact, since roundoff is a 
random process and is excited by different trailing 
digits in the scaled system, the deviations may be 
substantial. Nevertheless, after rescaling backwards 
the roundoff errors in the scaled system, we can show 
that the two random vectors ~ and M[ have mean 
and covariance of comparable size. 

The following argument suffices for the left-side 
roundoff errors during triangular decomposition. 
The other cases are treated similarly. The relevant 
formula is (see sec. 4.1.3, eq. (4.31)): 

~ = -A-•,x. (4.85) 

Applied to the transformed equations, this gives 

(4.86) 

Scaling backwards, we get 

(4.87) 

It remains to be shown that the local errors ' and 
M-• i' M-• have nearly the same mean and covariance 
structure. Since M is diagonal, we have to show that 
<u and i',/(m,m,) have comparable mean and covari­
ance. This is plausible because mean and variance of 
a local roundoff error <u depend on sign and magni­
tude of the coefficients a!J' and on changes of these 
coefficients for varyingp. 

If the mean and variance of £,1 depended precisely 
on these numbers, then the mean and variance of <u 
and i'ul(m,m) would be the same. Unfortunately, it 
is always the next integer power of the base {l bound­
ing the operands in an elementary operation that is 
responsible for the roundoff during an elementary 
operation. Hence mean and variance of local and 
global roundoff errors in the unsealed and scaled 
system can be expected to agree within only one pow­
er of the base {l. or, stated differently, agreement can 
be expected within only one digit of the computer­
internal number system. On the CDC 6600 we have 
{l = 2 which makes the difference marginal. On the 
IBM 360 we have {l = 16, which is not as marginal. 

I do not anticipate that the normal equations of the 
U.S. network adjustment are scaled for numerical 
purposes. Previous discussion has shown that such a 

scaling would be useless anyway. Occasionally we use 
scaling in a different way, as a theoretical tool to ar­
rive at better estimates. The normal equations them­
selves will not be scaled-only the formulas that pre­
dict the roundoff error. Let us outline this in the 
following paragraph. 

Cholesky' s algorithm is applied to the unsealed 
normals Ax = b. The local roundoff errors <u are 
bounded as shown in section 4.1.1, using integer 
powers of the base {l that bound operands and results 
of elementary operations involving the coefficients 
a)j''. Restricting attention to the analysis of left-side 
triangularization roundoff errors, we deal with the 
formula 

(4.88) 

It is only now when further treating this formula, 
that we employ the scale factors: 

This is rewritten as 

(4.90) 

The' are no longer roundoff errors occurring dur­
ing reduction of the scaled system. They are the result 
of scaling the roundoff errors during reduction of the 
unsealed system. The advantage of using scale fac­
tors may be the following: F = A -•, A, i', x may be 
much more homogeneous than F, A, '· x. 

Hence, bounds IIlii, lliill, 11£'11, llxll may be better in 
the sense that they come closer to the average size of 
the elements, whereas without scaling, bounds llfll, 
II all, 11£11, llxll must be chosen in agreement with a few 
outliers among the elements of these matrices and 
vectors. 

Remark: After completing most of the manu­
script, a published paper by Beresford/Parlett (1976) 
came to my attention. This work also points out that 
scaling has negligible influence. My other conclu­
sions about widespread misconceptions were also 
confirmed; for example, the effect of a proper or im­
proper choice of norms is not commonly understood. 
(See discussion in section 11.1.) 

5. PROPERTIES OF THE U.S. NETWORK 
RELEVANT TO THE ROUNDOFF STUDY 

A serious difficulty to be faced in our roundoff 
study is the limited amount of information on the 
U.S. network presently available for quick access. 
The N 0 S is setting up a data base for station and 
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observation information, but it will be several years 
before it is fully operational. Currently, only station 
files can be accessed. There is no way to perform sta­
tistical searches on the observations in a reasonable 
amount of time. The manner in which the observa­
tions connect the stations and the weights that will be 
assigned to them cannot be completely determined 
now. Lack of information will cause our estimates to 
deteriorate ~omewhat. We will have to rely on insight 
gained from: (1) searching the station files, (2) look­
ing at various generalized diagrams of the whole net­
work or representative portions, (3) analyzing small 
subnetworks, and ( 4) interviewing persons who are 
studying various special problems. 

The next subsection gives a general overview of the 
properties of the U.S. ground control network that 
must be considered carefully in the roundoff study. 
Later in this section we will deal in more detail with 
some of these individual properties, arriving at esti­
mates of the coefficients of the inverse of the net­
work's normal equation matrix. 

5 .I General Overview 

5 .1.1 Size of the network 

The network will contain approximately 170,000 
stations. About one-third of these represent first- and 
second-order triangulation stations, as well as trans­
continental traverse stations which strengthen the 
network. Two-thirds of the stations will be supple­
mentary. These include stations of local traverses, in­
tersection and resection stations, reference marks, 
excentrics and others. Supplemental stations con­
tribute little to the strength of the network. They 
could be eliminated prior to the adjustment, as it is 
done in a classical network computation. However, 
they will be retained to save labor costs during the ad­
justment of the U.S. net. Eliminating the supplemen­
tal stations would require special considerations for a 
large number of differently structured local systems 
of stations. Such considerations could be done suc­
cessfully only by an expert. The computer programs 
would have to be much more sophisticated, and the 
additional programing could cause another bottle­
neck. Dealing with all stations simultaneously, as 
NGS does, shifts the burden of manual work to the 
computer. This causes some problems. Computation 
time increases to be sure. But the worst problem is 
the very precise and heavily weighted ties between 
closely spaced stations that make the normal equa­
tion matrix much more ill conditioned than it would 
be otherwise. 

5 .1.2 Type of observations 

1 estimate that there will be 2 million to 3 million 
observations. About 99 percent contain unoriented 
directions. About 1 percent, namely 20,000 to 30,000 
involve distances. About 0.1 percent or 2,000 to 
3 ,000, are astronomical azimuths. The positional fix 
of the network will be done by means of about 130 
Doppler stations. 

5.1.3 Inhomogeneity of the network 

The density of the stations varies from 0 to 3,000 
per 1 ox 1 o quad. (A quad is a region bounded by two 
meridians and two parallels. Although the area of a 
I ox 1 o quad is not constant as latitude varies, point 
densities are calculated with respect to these quads.) 
Figures 5.1a-c show how station density varies over 
the conterminous United States. Figure 5.1b shows 
that the highest densities are near the east and west 
coasts. 

Another source of inhomogeneity is the observa­
tion weights. The program assigns rms errors to the 
observations according to predefined formulas and 
quality indicators (Schwarz 1978). To simplify our 
discussion, we assume that all rms errors are meas­
ured in a common unit of measure, the meter. Then it 
is clear what the rms error of a distance or a Dop­
pler position means. For directions and azimuths the 
rms error will refer to the lateral uncertainty of the 
line of vision with respect to the target point. (This 
lateral deviation is called "Perpendikel" in the Ger-· 
man literature.) Defined in this way, the rms error 
of an observation will never be less than 0.001 m. 
However, it may possibly increase to I m. As a conse­
quence, the diagonal elements of the normal equa­
tion matrix will be in the range of perhaps I m-' to 
10' m-'. Off-diagonal elements of comparable size 
will be arranged in such a way that the matrix has 
very unfavorable numerical properties. 

5.1.4 Structure of the network 

The U.S. first-order network was originally de­
signed as a system of intersecting triangulation 
chains. The chains were composed of basis figures 
which are mainly quadrangles with diagonals. After 
about four or five basis figures there will be an in­
tersection of two chains. (See figs. 5.2 and 5.3.) 

Lines of vision in this chain-type first-order net­
work typically range from 10 to 30 km, but there are 
outliers. Base lines are measured preferably at the in­
tersections of the chains, but this does not mean that 
there is a base line at every such intersection. 
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Figure 5.2.-A chain-type network. 

This system of chains still prevails in many por­
tions of the country, mainly the Rocky Mountain 
States of Montana, Wyoming, Colorado, and New 
Mexico, but also some llilidwestern states, such as 
Iowa, Illinois, and Ohio. In some southern states, 
such as in Alabama, North Carolina, Texas, Florida, 
the first-order chains are mostly unsupported by 
second-order control. In large portions of the United 
States, not only in densely populated areas, the 
chains are filled in by second-order areal networks, 
where the lines of vision range typically from 5 to 
20 km. Some metropolitan areas, for example 
around Washington, D.C., have high precision con­
trol networks with very short distances between sta­
tions. 

A peculiar feature of the U.S. network, which adds 
much to its global strength, is the transcontinental 
traverses, These traverses are of the highest preci­
sion; their total length is about 22,000 km. Figure 5.3 
clearly shows the loops. In about 80 percent of the 
cases the traverses are composed of basic figures that 
look like figure 5 .4, i.e., they are either narrow 
diamonds (60 percent of all cases) or narrow triangles 
(20 percent). In the diamond case the short distances 
between the closely situated stations are measured 
with an rms error of about I mm. The lengths of the 
principal distances in the traverses typically range 
from 7 to 20 km. The shorter lines are mostly found 
in the eastern region. 

Astronomical azimuths are measured along the 
transcontinental traverses at distances that are about 
double those of the long lines. 

Another important structural property can be 
called the "invariance of regional redundancy." The 
ratio of the number of observations in a certain re­
gion to the number of stations in that region does not 
depend strongly on the specific region or on the den­
sity of the stations located there. The average number 

of observations per station is only weakly dependent 
on station density. The only aspect of local structure 
of the network that changes with station density is 
scale; i.e., the average length of the lines of vision. 
The property of invariance of regional redundancy 
will not hold in a strict sense. Nevertheless, we feel 
that it is a better approximation than the assumption 
that regional redundancy increases in proportion to 
station density. 

5.2 Estimating the Inverse of the Normal Equation 
Matrix 

From our discussions in sections 4.1.3 and 4.1.4, it 
became clear that we need estimates on the elements 
J,, of the inverse of the normal equation matrix. 
Although only a single bound 11/11 on /,1 was used 
for the preliminary estimates in 4.1.4, we will need 
more detailed information to arrive at refined esti­
mates. These refined estimates will rely on the equa­
tions listed at the end of section 4.1.3. Of course, 
what we can do is limited by network information. 
On the other hand, even an error of I 00 percent 
should not be considered too serious. It would only 
mean that our roundoff estimates are off by a factor 
of two. 

We will mainly be interested in the global features 
of the inverse. What we can expect locally is clear 
from the local adjustments that are continuously per­
formed at NGS. The desired global information will 
be obtained by setting up a simplified model of the 
network. This model will have many fewer parame­
ters than the 400,000 unknowns of the real network. 
However, the parameters of the simplified model will 
be capable of bringing out the random global distor­
tions of the network. The covariance matrix of the 
substitute parameters will be obtained by computer 
simulation. After presenting the numerical results, 
we will discuss some supporting theoretical and prac­
tical evidence for their validity. 

5.2.1 Description of the model 

We will assume that we are using a plane net. Any 
sophistication based on a curved reference surface 
would be out of place in the present context. Imagine 
a plane network, which we call the "real" one, super­
imposed by an artificial grid-type network, as shown 
in figure 5.5. 

The meshes of the artificial grid network are rela­
tively large when compared to the station spacing of 
the real network. For the U.S. network we imagine 
a grid network built of I ox I o quads (in plane projec­
tion). Later we will even switch to 2° x 2° quads. The 
coordinates of the grid points will be the substitute 
parameters and their covariance matrix will give us a 
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Figure 5.4.-Basis figures of transcontinental traverses. 

Figure 5.5.-Sample network with superimposed 
finite element structure. 

global picture of the random distortions of the real 
network. 

Our first problem will be to establish a functional 
relation between the original coordinates, which we 
denote by the vector p, and the substitute coordi­
nates, which we denote by the vector q. Since there 
are fewer artificial coordinates than real ones, we 
cannot expect a one-to-one mapping between these 
two sets of parameters. We start by defining a map­
ping from q top. For this purpose we concentrate on 
a single quad of the grid, as shown in figure 5 .6a. 
Only real coordinates of stations situated in the in­
terior or on the boundary are considered as being de­
pendent on the four corners of the. quad. The corners 
are numbered 1,2,3,4, as shown. If the quad is undis­
torted (as in fig. 5.6a), the real network nodes in its 
interior will have certain positions. One may assume, 
for definiteness, that these positions correspond to 
the approximate positions of the stations. Imagine 
now a small distortion of the quad. Figure 5.6b 
shows such a distortion in a grossly exaggerated way. 
The configuration of the interior nodes will also 
suffer distortion. We must define the shifts of the inc 
terior nodes in a meaningful way. 

Figure 5.6.-Quad of (a) undisturbed and (b) disturbed finite element grid. 
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Essentially our task is to perform an interpolation. 
The shifts of the four corner nodes of the quad must 
be interpolated so that we can obtain shifts for the in­
terior nodes that depend uniquely on those of the 
corner nodes. 

The interpolating functions must fulfill certain re­
quirements. They must be continuous in the interior 
of the quads. But an important additional require­
ment is consistency between the interpolating formu­
las of adjacent quads which share a common bound­
ary segment. A station situated on a boundary seg­
ment must experience equal shifts if it is to be viewed 
as part of an adjacent quad. The interpolating func­
tions for one quad may be called "local" functions. 
All local interpolating functions must combine to a 
global interpolating function that is continuous 
everywhere. 

Within a certain quad we will use a bilinear inter­
polation formula which is one of the simplest inter­
polation formulas used in finite element applications 
(Zienkiewics 1971, sec. 7.3). 
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It will be necessary to switch temporarily to a more 
elaborate notation. Let x1 , y1 denote the coordinates 
of one of the real network stations situated in the in­
terior of the quad. Let u,, v,, k= I ,2,3,4 denote the 
coordinates of the four corners of the quad. It suf­
fices to derive the interpolating formula for one coor­
dinate, i.e., for x as a function of the u's. The inter­
polating formula which gives yin terms of the v's will 
be formally identical. 

Assume aiocal coordinate system with an origin at 
the midpoint of thO' quad. (See fig. 5.7 .) Assume that 
±a, ±b are the local coordinates of the four corners. 
Denote by ~.'1 the local coordinates of a certain inte­
rior station. Let Au., flu,, Au,, Au, be the shifts of the 
corner points. Then Ax will be the shift of the station 
with local coordinates ~·'1· (See fig. 5.7 .) We establish 
an interpolation formula of the .type 

Ax= A + B~ + OJ+ D~'l· (5.1) 

The four coefficients A, B, C. D must be chosen 
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Figure 5. 7 .-Choice of local coordinate system in a finite element quad. 
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in such a way that for (~,'1) = (±a, ±b) the shifts 
!J.u,, ... ,!J.u, of the four corner points result. This 
leads us to the following linear system: 

[
:: :: :: : ::] [~] = [:~:] (5 .2) 

+ I -a + b - ab D !J.u, 

Up to the factors 2, 2a, 2b, 2ab, by which the col­
umns are multiplied, the matrix is orthogonal. There­
fore inversion is easily done and yields 

n r .. +I +I +I 

n B -1/a + 1/a + 1/a -lla ~u, 5.3) =lA c -lib -lib +lib +lib ~u, 

D + ll(ab) -I/(ab) + ll(ab) -l/(ab) ~u. 

s 

If we denote by S the matrix occurring in this for­
mula as shown, we can write the interpolation for­
mula for the shift l1x of an interior station with local 
coordinates ~.'1 as 

!J.x = (1, ~. '1· ~'1) S(!J.u., !J.u,,!J.u_, !J.u,)r. (5.4) 

If we also want the station number j to appear in the 
formula, we must write 

11x1 = (1, ~1, '11> ~_,. ~,'1_,) S(!J.u, !J.u,,!J.u_, !J.u,)'. (5.5) 

The completely analogous formula for they coordi­
nates is: 

!J.y_, = (1, ~_;, rz1, ~_,'IJ S(!J.v, !J.v,,!J.v,,!J.v,)'. (5.6) 

These interpolation formulas obviously have conti­
nuity in the interior of the quad. Continuity of the 
global interpolation formula across the quad bound­
ary is also easily proved, either by explicit calculation 
or by noting that interpolation along a quad bound­
ary is linear and, therefore, completely determined 
by the two corner points situated at the boundary 
segment. 

We have now established a mapping from the quad 
corners to the real stations that has all the desired 
properties. We will now switch back to the previous 
notation of p, q for the vectors of the station coordi­
nates and quad corner coordinates, respectively. We 
denote the increments to these coordinates by !J.p, !J.q. 
In this notation our mapping may be written symbol­
ically as: 

!J.p = R !J.q .. (5.7) 

The matrix R appearing in this formula is sparse be­
cause the shift of a certain station depends only on 
the shifts of the four corners of the surrounding 
quad. 

The next procedure is now fairly simple. Consider 
the linearized functional relation between corrected 
observations and adjusted coordinates. In section 
3.3, eq. (3.17) was written 

11£ + v = B !J.p. (5.8) 

We now simply replace !J.p by R !J.q and obtain 

11£ + v = BR !J.q = C !J.q. (5.9) 

This is viewed as a new adjustment problem. The 
normal equations are 

(C'PC) !J.q = C'P/1£. (5.10) 

The solution is 

!J.q = (CrPC)-' C'PM. (5.11) 

The covariance of the adjusted !J.q is given by 

Cov(!J.q) = (CrPC)-'. (5.12) 

This matrix will serve us in judging the global ac­
curacy of the network. 

Remark: The transition from !J.p to !J.q deserves 
further comment. The reader may possibly miss the 
formula that expresses !J.q in terms of !J.p. We have 
derived !J.q (eq. 5.11) as a function of M. In order to 
replace M by !J.p, we can consider observation incre­
ments of 11£ that are consistent with !J.p: 

11£ = B !J.p. (5.13) 

We then have 

!J.q = (C'PC)-• C'PB!J.p. (5.14) 

Note that the matrix in front of !J.p is a left inverse of 
R in the equation !J.p = R ~q. 

5.2.2 Further simplifications 

The model described in subsection 5.2.1 requires a 
knowledge of location, type, and weight of all obser­
vations. Since this knowledge is not available, further 
hypothetical assumptions must be made. I nforma­
tion made available to me by the NGS consisted of 
computer-readable files which gave the number of 
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triangulation stations per I ox I o quad. It also 
specified how this number splits into primary tri­
angulation stations and supplemental stations of 
various kinds. Primary stations are first and second 
order triangulation stations that essentially build up 
the network. Supplemental stations contribute little 
to its overall strength. The network then is further 
stiffened by the transcontinental traverses. A file that 
listed all the stations of the transcontinental trav­
erses, together with the latitudes and the longitudes 
of these stations, was also available. Another file 
listed those stations of the transcontinental traverses 
in which astronomical azimuths were taken. Finally, 
there was a file listing the 132 Doppler stations 
together with their latitudes and longitudes. 

Based on the station information above, and guid­
ed by discussions with NOS staff members, notably 
J. G. Gergen, I have assumed a certain pattern of 
observations outlined in the following sections: 

5.2.2.1 Assumed angular observations 

Although bundles of unoriented directions are 
measured throughout the U.S. network, I have as­
sumed measured angles instead, because this made 
the computer programs somewhat simpler. Our 
model will be so rough anyway that this deviation 
from the truth does not matter. Assume, for the mo­
ment, that primary stations in a quad are arranged in 
a regular pattern such that the quad decomposes into 
the 16 subquads shown in figure 5.8. 

The size of the I ox I o quads, by the way, is 
assumed to be uniform over the Unitea States and 
with the following dimension: 2a x 2b with b = 
6380•rr/360 km, a = b • cos (40°). We assume 128 
angles were measured as indicated in figure 5.8. 

Figure 5.8.-'Assumed regular pattern 
of primary stations in a I 0 x f0 finite element quad. 

There are eight angles per subquad and also eight 
angles per interior station. The weight of any angle is 
based on an assumed rms error of I" (arc second). 
The contribution of the 128 angles toward the normal 
equation matrix cr PC, which is the normal equation 
matrix for the coordinates of the I ox I 0 quad cor­
ners, can be precalculated once and.for all. This con­
tribution will only involve coordinate shifts of the 
four corners of the quad under consideration. 

The problem now is that the density of the primary 
stations is not uniform over all the quads. We take 
this into account in a rather crude way. Our precal­
culated contribution to the normals is based on an 
assumed density of 16 primary stations per quad. 
(Note that the stations at the boundary contribute to 
more than one quad). If we encounter a quad with n, 
stations, we simply multiply the precalculated con­
tribution by the weight factor n,/16 before we add 
this contribution to the normals. An essential as­
sumption in this approximation is that the accuracy 
of an angle is not dependent on the length of the lines 
of vision. This assumption is reasonable as long as 
the lines of vision are not too short, say below 2 km. 
However, this may safely be assumed for the primary 
stations. 

5.2.2.2 Assumed base lines other than those in the 
transcontinental traverses 

There are about 20,000 to 30,000 measured dis­
tances in the U.S. network. It is estimated that only a 
fraction of them, about 5,000, contribute significant­
ly to the strength of the network. About 4,000 are 
found in the transcontinental traverses. The remain­
ing I ,000, may be base lines that strengthen otherwise 
purely directional portions of the network. The other 
distances, about 15,000 to 20,000, are found mostly 
in traverses and in short connections between clus­
tered stations, and, therefore, do not add much to 
the strength of the network. 

In the simulation study I have assumed that there is 
one base line of length 10 km at the center of any 
quad that has more than 15 primary stations. Since 
the northing of this base line is uncertain, I have ac­
tually assumed two base lines, one in an east-west 
direction, the other in a north-south direction. The 
weight of the original base line, which was assumed 
on the basis of an rms error of I em, was divided 
equally between the two artificial lines. Altogether, 
base lines were assumed in this manner for 809 
!0 X l 0 quads. 

5.2.2.3 The observations of the transcontinental 
traverses 

Stations of the transcontinental traverses that are 
situated close together (fig. 5.4) have been lumped 
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together into one station. Having done this we can 
assume that there are two distances for each station. 
We assume an average length. of 10 km for one dis­
tance and an rms. error 1 em. Again the two dis­
tances are assumed to be east-west and north-south 
The weight is 110.01 m-• per distance. This was not 
divided because there are actually two distances. 

The stations of the transcontinental traverses in 
which an azimuth was observed are explicitly speci­
fied on a file. Hence these azimuths could be easily 
taken into account. Because the target point for an 
azimuth is unknown, I have assumed two azimuths, 
one in an east-west direction and the other in a 
north-south direction. I have divided up the weight 
between them. The weight is based on an assumed 
rms error of 1" and an assumed length for the line of 
vision of 10 km. 

5.2.2.4 The Doppler positional observations 

The network has 132 Doppler stations, as shown in 
figure 5.3. A Doppler observation is considered 
equivalent to the direct observation of the two coor­
dinates of a station. Although the NOS will assume 
smaller rms errors, I have used 1 m as the rms error 
of an observed coordinate. 

5.2.3 Remarks on the computer programs for the 
simulation study 

The computer programs used to obtain the numer­
ical results are not the ultimate in speed and storage 
utilization, since I designed, coded, key-punched, 
and debugged them in a short period of time. Their 
main purpose was to obtain quick results. When it 
became clear that a solution for the entire network 
based on 1 o x 1 o quads was not possible in one 
sweep, I decided to enlarge the, quads to 2° x 2° 
rather than lose time segmenting the programs. The 
procedure is best described as follows: 

Imagine the normals formed by using parameters 
that are the coordinates of the corners of the 1 o x 1° 
quads. The normals are precisely formed as outlined 
in section 5.2.2. After having the 1° x 1° quads 
available, a transition is made to a smaller set of pa­
rameters, i.e., to the coordinates of the corners of the 
2° x 2° quads. This parameter condensation is car­
ried out in the same spirit as the original transforma­
tion of the station coordinates to the coordinates of 
the 1 o x 1 o quad corners. The same interpolation 
formula specified in section 5.2.1 is used. The role of 
the interior stations in this section is taken over by 
the 1 o x 1° quad corners. 

In the computer the transformation to the 2° x 2° 
quads is not actually carried out subsequent to the 
formation of the 1° x 1° normals because no storage 

saving would be obtained. Rather, the transforma­
tion is continuously carried out during the process of 
assembling the normals, and only coefficients per­
taining to the 2° x. 2° normals are accumulated in 
central memory. 

Having two versions of the program, one for 1 o x 
1° quads, the other for 2° x 2° quads, offers an op­
portunity of checking the model's consistency by 
comparing solutions obtained by means of both ver­
sions. Of course, such comparisons could be made 
only for a portion of the whole network. The results 
of such comparison, which covered the area west of 
the Mississippi were quite satisfactory as indicated in 
the following subsection. 

5 .2.4 Results of the simulation study 

The rms point errors for the corners of the 2° x 2° 
quads are shown in figure 5.9. The corners have odd 
latitudes and longitudes. Point errors are specified in 
centimeters. We see that in Maine the point errors go 
up to nearly 50 em. There are also larger values at the 
southern tip of Florida and in the northeastern cor­
ner of Washington State. Otherwise the following 
pattern prevails. Typical values are about 25 em at 
the boundaries and 15 em in the interior. In areas of 
largest station density, close to the east and west 
coast, these values are about 20 em. 

Sample covariances among coordinates are exhib­
ited in figures 5.10a-e. Figure 5.10a lists the covari­
ances of the quad corner with latitude 39° and longi­
tude 77° with all other quad corners. The four values 
referring to<+.+>. <+,A), (A,+). (A, A) are condensed to 
one number shown in the appropriate cell of figure 
5.10a. This number is the average over the absolute 
values referring to the four coordinates. The values 
are listed in units of the fourth digit after the decimal 
point; the covariances are scaled to a meter squared. 

Figures 5.10b,c give a pictorial representation of 
the covariances for the same "base quad" as in fig­
ure 5.10a, i.e.,+ = 39°, A= no. Figure 5.10b refers 
to the entries for<+.+>. (A,+); figure 5.10c refers to the 
entries for <+,A), (A,A). Each figure illustrates a col­
umn of the inverse F. In other words, it gives the 
solution of the normals when the right-hand side is 
zero except for a 1 at one of the coordinates at + = 
39°, A = no. Note that the heavy lines in figures 
5.10b-e connect points of uneven latitudes and longi­
tudes, i.e., they connect the centers of the quads 
shown in the other figures. This explains the spur at 
the southern tip of Florida. Figures 5.1 Od,e refer to a 
different base quad,+ = 47°, A = 69°. These figures 
demonstrate the weakness of the network in the area 
of Maine. 

Note that figures 5 .lOa-e describe only the global 
features of the covariance matrix and that local peaks 



48 A Priori Prediction of Roundoff Error Accumulation in the Solution of a Super-Large 

56 
666 

668 

672 

674 

678 

678 

686 

882 

684 

686 

688 

692 

694 

696 

898 

162 

164 

166 

168 

1 I D 

1 I 2 

\14 

\16 

1 1 9 

128 

122 

124 

126 

Geodetic Normal Equation System 

48 46 44 42 46 38 36 34 32 28 28 

4-8 4-el 

4-1 33 29 

39 29 25 25 

27 23 21 

26 22 2rl 2f!J 

21 19 18 18 19 

21 18 17 17 18 19 

2f!J 17 17 17 17 17 19 21 25 57 

21 18 16 16 16 16 17 18 2f!J 26 

23 19 17 16 15 15 16 16 17 19 

21 18 16 15 15 15 15 15 16 

2f!J 17 15 15 15 14- 14- 15 16 18 

18 16 15 15 14- 14- 14- 15 15 18 

22 [7 16 15 14- 14- 14- 14- 14- 15 17 

2f!J 17 16 15 14- 14- 14- 14- 14- 15 17 

2f!J 17 15 15 14- 14- 14- 14- 14- 15 17 22 

19 17 15 15 14- 14- 14- 14- 15 15 17 22 

19 17 15 15 14- 14- 14- 14- 15 16 19 

19 17 15 15 14- 14- 14- 15 15 16 21 

21 18 16 15 15 15 15 15 15 17 

21 18 16 16 15 15 15 15 16 

21 18 17 16 16 15 16 16 16 19 

21 18 17 16 16 16 16 16 17 20 

21 19 18 16 16 16 16 16 17 2f!J 

22 19 18 17 17 17 17 17 18 

22 19 18 18 17 17 17 18 19 

23 20 19 19 18 18 18 20 27 

25 21 20 20 19 19 19 20 24-
' 

26 23 22 21 21 21 21 

31 27 25 24- 24- 25 

Figure 5.9.-Rms point errors. Values refer to the global covariance and are listed in centimeters. 

24 

• 



56 
666 

USB 

676 

672 

674 

676 

678 

686 

682 

684 

686 

688 

696 

692 

694 

696 

698 

166 

162 

164 

166 

168 

11 ~ 

112 

114 

116 

118 

12n 

122 

124 

126 

48 

11166 

11163 

1116111 

11156 

11153 

1115111 

11146 

11143 

1114111 

11137 

11134 

11131 

11129 

11129 

11129 

1113111 

11131 

11132 

11134 

46 44 

11111 11112 

11111 11112 

11112 11112 

11112 

11111 

1111111 

11183 fl81 

111111111 11175 

11173 1117111 

11167 11165 

11162 1116111 

11158 11155 

11154 11152 

11151 11148 

11147 11145 

11144 11142 

11141 11139 

11138 11136 

11135 033 

11132 1113111 

11129 11127 

11127 11125 

11126 11124 

027 025 

11128 11126 

11129 11127 

11131 11129 

11132 11131 

Properties of the U.S. Network 

42 38 36 

11112 11112 

11111 1111111 

11199 11197 

11197 11194 11192 11143 11199 

11195 1119111 11186 11186 11191 

fl93 11184 1118111 1118111 11184 

11188 11179 11173 11173 11177 

11178 11173 11166 11167 11171 

11172 11167 11161 11161 11165 

11167 11162 11157 11156 1116111 

11161 11157 11153 11152 11156 

11157 11153 11149 11148 11152 

11153 11149 11145 11145 11148 

11149 11146 11142 11142 11144 

11145 11142 11139 11139 1114 1 

11142 11139 11136 11136 11138 

11139 036 11133 11133 036 

11135 033 03111 11146 11133 

11133 11131 11128 11128 03111 

1113111 11128 025 176 11128 

11128 11125 11123 11123 11125 

11125 11123 11121 021 023 

11123 021 11118 11119 11121 

11122 1112111 11117 11118 11121 

11123 11121 019 1112111 11122 

11124 11122 11120 11121 11124 

026 11124 11122 11123 11126 

11127 026 11124 11125 

11129 11128 11126 

49 

34 32 36 28 26 24 

11195 

11187 

1118111 11181 11182 11182 11179 

11175 11176 11178 11179 

11169 11171 11175 

11163 11167 

11159 11162 11165 

11155 11158 11161 

11151 11154 11156 

047 05111 053 

11144 11147 11149 11151 053 

11139 11144 11146 11149 11151 

11138 11140 11143 

11135 11137 11140 

11132 11135 11137 

1113111 11132 

11128 11130 

11125 11128 

11123 11126 

11123 

11125 

11126 

11128 

Figure 5.10a-Condensed covariance values for the base quad, f = 39°,). = 77°. Values shown are in units of the fourth decimal place. 

-----------------------------------



50 

58 
866 

868 

878 

872 

874 

876 

878 

888 

882 

884 

886 

888 

898 

892 

894 

896 

898 

188 

182 

184 

186 

188 

118 

112 

114 

116 

118 

128 

122 

124 

128 

A Priori Prediction of Roundoff Error Accumulation in the Solution of a Super-Large 
Geodetic Normal Equation System 

48 46 44 42 38 36 34 32 28 26 

I 

I I 

24 

Figure s.IOb.-Pictorial representation of global covariance. Network response to latitude disturbance at f = 39°,). = 77°. 



Properties of the U.S. Network 51 

58 48 46 44 42 48 38 36 34 32 28 26 24 
866 

868 

D.78 

872 

874 

876 

878 

888 

882 

084 

886 

888 

898 

892 

894 

896 

898 

l88 

l82 

l84 

l86 

l88 

l l8 

l l 2 

ll4 

ll6 

ll8 

l28 

!22 

l24 

!26 

Figure 5.10c.-Pictorial representation of global covariance. Network response to longitude disturbance at+ = 39°, A. = 77°. 



52 

n66 

\ 

A Priori Prediction of Roundoff Error Accumulation in the Solution of a Super-Large 
Geodetic Normal Equation System 

58 48 46 44 42 38 3B 34 32 38 28 26 

.. 
'\ 

\ \ 
~ \. 

\ \ .... 
" n74 ., 

n78 T \ \ ' n78 '\ - \ 
nan 

na2 I 
ns4 

na6 

naa 

nsn 

n92 

ns4 

no 

898 I 
1nn 

1n2 

1n4 

1n6 

1na 

11 n 

II 2 

114 

II B 

118 

128 

122 

124 

128 

24 

I 

Figure 5.10d.-Pictorial representation of global covariance. Network response to latitude disturbance at+ = 47°, A. = 69°. 



Properties of the U.S. Network 53 

~66 

5~ 48 46~4~ 38 36 34 32 3~ 28 26 2 

"/ ""'-
~68 

-..;;;;;;;; 
~ ~ 

67~ 7 """"" -.:} f 
~72 1/ I ...:{ 

IT 
7 • ~74 

~76 
T 

678 

68~ 

682 

684 

~86 

688 

696 

692 

694 

696 

698 

166 

162 

164 

166 

168 

116 

112 

114 

116 

118 

126 

122 

124 

126 

Figure 5.10e.-Pictorial representation of global Covariance. Network response to longitude disturbance at f = 47°, A. = 69°, 

---------------------------------------------------------------------------



54 A Priori Prediction of Roundoff Error Accumulation in the Solution of a Super-Large 
Geodetic Normal Equation System 

must be imagined as being superimposed in the area 
of the base quads. 

The results of the simulation study must be proper­
ly interpreted. What we get is a smoothed version of 
the covariance matrix. Imagine that a localized 
covariance matrix is superimposed, as mentioned 
above. The superimposed localized covariance mat­
rix has entries near zero if the two stations involved 
are separated by, say, 300 km. The point errors of 
16 em which we obtain are not representative for the 
point errors of single stations. Instead they reflect the 
accuracy of regional means taken over the coordi­
nates of a number of stations. To estimate the locally 
superimposed errors, we have to look at regional ad­
justments, and we can also draw some conclusions 
from studying large regular networks. This will be 
done in section 5.3. 

Covariances obtained from our simulation study 
are considered to be quite representative, provided 
that the spacing between stations is more than 2 to 3 
quad diameters. From various calculations, similar 
to the one documented in figures 5.10a-e, we see that 
covariances between latitudes and between longi­
tudes hardly exceed 0.025 m'. They come near to 
these values if both stations are close to a boundary. 
For central stations, covariances are mostly below 
0.01 m'. In any case, about 50 percent of all 
covariances of a certain coordinate with all others 
may be assumed below 0.01 m'. Cross-covariances 
between latitudes and longitudes are generally small­
er by a factor of about 0.1. 

For the portion of the network west of the Missis­
sippi, results for the 1 o x 1 o subdivision, as well as 
for the 2° x 2° subdivision, were obtained. The 
choice of weights and other parameters was some­
what different from that described in section 5.2.2. 
We therefore refrain from exhibiting numbers and 
simply mention that sample variances and covari­
ances agreed within 5 to 10 percent. 

5.3 Estimating the Local Features of the 
Covariance Matrix 

Our model described in the previous section as­
signs only eight degrees of freedom to a 2° x 2° 
quad. Only the eight coordinates of the quad corners 
are allowed to vary. In a 2° x 2° quad there may be 
as many as 2 x 5,400 ~ 10,800 station coordinates 
whose degrees of freedom are almost completely sup­
pressed. It is our task to estimate the local variations 
of the station coordinates within a 2° x 2° quad and 
also, to be sure, a little beyond the boundaries of 
such a quad. As mentioned earlier, the global covari­
ance coming out of the finite element model must be 
superimposed by a local covariance that is mostly 
concentrated in 2° x 2° quad regions and is practical-

ly zero for distances exceeding, say, 300 km. To state 
the problem slightly differently, we are interested in 
those portions of relative errors for stations spaced 
less than 300 km apart that cannot be explained by 
global covariance. 

Let us begin with the observation that the local co­
variance may have an appreciable peak. There may 
always be rather weak portions of the network com­
prising supplementary stations. However, the exten­
sion of such weak portions will not be large. Hence 
such a peak will always be quite narrow and after a 
few !O's of kilometers will have tapered off com­
pletely. Let us assume that such local peaks amount 
to (30 em)', and that they taper off after 30 km. 

Remark: Large station vari.ances cause no con­
cern if a station with a large variance is not involved 
in a measurement with an accuracy much higher than 
its coordinate errors indicate. Such a station will have 
small coefficients in rows and columns of the nor­
mals belonging to it. If j refers to a coordinate of 
such a station, then some of thej;1, fj, J~ I, ... ·,n 
may be large, but ajkJ akj, k= 1, ... ,n in the normals 
will be small. Eq. (4.33) will have all large j;1, jj; 
counteracted by small <'s. A similar argument applies 
to the right side errors ~· However, the argument 
breaks down if there is strong coupling between a 
group of stations having large point errors. 

Consider now the framework of the primary sta­
tions that give the network its strength. We claim, as 
supported with evidence below, that the individual 
coordinate errors of such stations will not appreci­
ably exceed the error of the coordinates of the 2° X 

2° quad corners. In areas of fill-in networks, the 
relative error of a station with respect to its neighbor­
ing stations approximates closely the surplus of indi­
vidual errors over smoothed-out errors. This mean­
square "neighborhood" error may be around (5 em)' 
to (l 0 em)'. In areas where the triangulation chains 
have not been filled in, neighborhood errors may be 
larger, in particular between stations on different 
arcs. We will allow (15 em)' to (20 em)' in such situa­
tions. 

5.4 Supporting Evidence for Estimates of Global 
and Local Covariances from Test Calculations 

In an internal report, Vincenty (1975) describes a 
simultaneous adjustment of the southeastern loops 
of the transcontinental traverses. There are two large 
loops and a small one (fig. 5.3). MEADE'S RANCH 
is on one of the larger loops; the other large one has 
an arc along the east coast. The small loop includes 
mostly portions of Louisiana. The total number of 
traverse stations was 949, with 5,227 observations. 
The first adjustment was done with MEADE'S 
RANCH held fixed. A second adjustment included 
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19 Doppler stations along the traverses which provid­
ed the position information. By means of diagrams, 
Vincenty shows that adjusted latitude and longitude 
errors do not exceed 60 em if Doppler stations are ig­
nored and 31 em if Doppler stations are included. 
Our finite element model, which also includes Dop­
pler stations, predicts latitude errors of about 15 em 
along the southern portion of the east coast. Locally 
superimposing 10 em gives V 15' + 10' = 18 em. 
Taking into account that Vincenty assumed smaller 
errors than we did for the Doppler stations (0.60 to 
0.75 m vs. 1 m), and that 19 Doppler stations provide 
a much poorer fix than 130 Doppler stations, and 
finally, if the effect of fill-in with its vast number of 
observations is considered, there is no reason to re­
ject the plausibility of our results. 

Moose and Henriksen (1976) undertook another 
study of great relevance to our investigations. They 
performed a sequence of adjustments of a moderate­
ly large network covering portions of Mississippi, 
Louisiana, and Alabama. Their work is based on an 
earlier investigation by Dracup (1975). The primary 
purpose of these studies was to investigate the im­
provement of a network by including Doppler obser­
vations. The I ,330-network stations split into about 
840 first-order stations that form a chain-type net­
work of the kind depicted in figure 5 .2, and about 
490 second-order stations that provide fill-in in some 
portions but not in all. Doppler positions were ob­
served at five stations. The network was strengthened 
by 63 distances and 22 azimuths. The first-order sta­
tions had only 18 distances. The paper by Moose and 
Henriksen (1976) gives partial results for 16 different 
adjustments classified by: inclusion or exclusion of 
second-order stations, inclusion or exclusion of all or 
some of the Doppler stations, or inclusion or exclu­
sion of some or all of the distances. We will concen­
trate on only two of those adjustments. The first one, 
labelled B• jn the paper, concerns only the first-order 
stations. The second one, labelled G*, comprises all 
stations. Both adjustments use information on dis­
tances (15 vs. 60), azimuths (18 vs. 22), and Doppler 
stations (five in both cases). 

Adjustment B• gives us a good opportunity to es­
timate the accuracy between stations on different 
arcs of a chain-type network. Because the network 
under consideration is only a subnetwork of the en­
tire U.S. network, the accuracy will be poorer. We 
will overestimate the errors. If we restrict attention to 
the innermost arcs, reasonably close overestimates 
will be obtained. The test lines labelled 16.1, 16.2, 
17.1, 17.2 by Moose and Henriksen (1976) span 
neighboring arcs. These four lines are at the center of 
the test network. The network boundary is two or 
more arc loops away. The standard errors of these 
lines are between 14.5 and 16.2 em. 

For adjustment G*, only error ellipses are speci­
fied. The error ellipses are fairly uniform with semi­
major axes near 57 em and semiminor axes near 52 
em. The explanation of this phenomenon is simple. 
For the Doppler measurements Moose and Henrik­
sen assumed rms errors of0.9 min latitude and 1.2 m 
in longitude. This accuracy is inferior to the relative 
accuracy of the network stations owing to the tradi­
tional observations of directions and distances. 
Hence it can be expected that the accuracy of the 
position fix of the network can be estimated very well 
by assuming that the network is rigid. Since there are 
five Doppler stations, this would result in 0.9/V5 m 
= 40 em latitude errors and 1.2/V5 m = 54 em 
longitude errors. The error ellipses should all be ori­
ented in an west-east direction. This is truly the case, 
as shown in figure 12 of the Moose and Henriksen 
report. Tlie fact that we got slightly smaller values, 
namely 40 em vs. 52 and 54 em vs. 57 accounts for 
the failure of the network to be fully rigid. (See_ also 
the discussion in appendix I, Moose and Henriksen 
(1976).) 

In our simulation study, we have assumed an error 
of I m for Doppler-observed latitudes and longi­
tudes. Since we have about 130 Doppler stations, we 
would obtain llv'T30 m = 9 em positional errors if 
the network were fully rigid, Our position errors are 
larger. They are about 10 em in the central areas and 
about 14 to 18 em in the coastal areas. (See fig. 5.9 
and recall that this figure shows point errors, i.e., the 
superposition of latitude and longitude errors.) We 
see that the network cannot be considered fully rigid, 
at least not as far as the coastal areas are concerned. 
Noting this, there is nothing to contradict the plausi­
bility of our simulation study. 

5.5 Supporting Evidence for Estimates of Global 
and Local Covariances from the Mathematical 

Theory of Regular.Networks 

The U.S. network can hardly be called ,a regular 
one. Nevertheless, there is no doubt that it shares 
some properties with networks based on completely 
regular design and weight structure. In cooperation 
with other theoretical geodesists (see Borre and 
Meiss! (1974), Bartelme and Meiss! (1974), Meiss] 
(1976)) I have studied regular networks extensively. 
Without repeating detailed derivations, we will take a 
look at a certain regular network which shares some 
features with the U.S. network. The purpose is to 
study how relative accuracy depends on distance. 

5.5.1 Regular model of the U.S. network 

First imagine a purely directional network, as 
shown in figure 5.11. We do not make any specifica­
tions at present about the boundary of the network. 
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Figure 5.11.-Portion of a regular directional network. 

We study the normal equations of an interior station, 
situated at the intersection of the grid lines p and q. 
We denote by llx,. = (l1~,., llr),,.)' the coordinate 
shifts of station (p,q). We are interested in the left 
side of the normals from which we imagine the direc­
tion unknowns eliminated. The normals look like 

TABLE 5 .I.-Left-side normal equation coefficients 
A,.(seeeq. (5.15))fora regular directional 

network. 

(5.15) 

They may also be written as: 
., 
L A,.-~ q-.• Axr.• = ... r,.•=-2 ' 

(5.15a) 

The 2 x 2 coefficient matrices of the parameters llx,,, 
do not depend on the location of (p, q). Any interior 
node has the same left side coefficients in its two nor­
mal equations. The normal equations are translation­
invariant. The numerical values of the matrices A,, 
can be read from table 5 .I. The values are scaled to 
an assumed grid spacing of unity. Also the observa­
tional weights are assumed to be uniformly equal to 
the value p = I. Obvious scale factors have to be ap­
plied if spacing and weights change. 

A continuous analog of eqs. (5.15) is obtained if 
we let ll~(p. q) = ll~''" liYJ(p, q) = liYJ,,, and if we view 
ll~(p, q), l!.YJ(p, q) as smooth functions of the continu­
ous variables p, q, interpolating the discrete values 
11~1"1' llYj,q• 
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Taylor expansion up to second order gives 

A~(p + Ap, q + Aq) = A~(p,q) + /:J A~ Ap + 
i:Jp 

+ /:J A~ A + .!_ [ I:J'A~ Af}' + 
aq q 2 L aP' 

+ 2--ApAq+ --Aq' i:J'A~ I:J'A~ J 
i:Jp i:Jq i:Jq' 

(5.16) 

together with a similar formula for A'J{p + Ap, q + 
Aq). Inserting this into the normal equations for sta­
tion (p,q), one gets (remembering that Ap = Aq = 1): 

_ { I:J'A~ + I:J'A~ } = .... 
/:)If' i:Jq' 

(5.17) 
-{ i:J'A'l + i:J'A'l t = .... 

/:)If' i:Jq' ~ 

We see that the continuous approximation to the nor­
mals gives, as far as the interior stations are con­
cerned, Poisson's equation for the two coordinates 
separately. The differential operator on the left-hand 
side is Laplace's operator. 

Our next step is to add distances and azimuths to 
the network. In order to maintain translation invari­
ance we will assume that distances and azimuths are 
measured along the lines shown in figure 5.12. Each 
line represents one distance and one azimuth. 

As we have pointed out, the number of distances is 
about 0.01 of the number of directions. The number 
of azimuths, in turn, is about 0.1 of the number of 
distances. We shall account for this by weight factors 
p,, Po assigned to the individual distances and 
azimuths. (Recall that for directions we have as­
sumed p = 1.) These weight factors account for not 
only the differences in number between the three 
kinds of measurements, but also for different indi­
vidual accuracies. Whereas a direction is typically ac­
curate to 0.5 arc seconds, i.e., 2.5 ppm, distances 

Figure 5.12.-Portion of a superimposed 
reSular distance and azimuth network. 

may be as good as I ppm, whereas azimuths are 
about 5 ppm. One must also take into account that, 
contrary to figure 5.12, the true distance and azimuth 
subgraph is not connected. Connection is established 
via the directions, which degrades the distances 
somewhat. We assume 

p = I for directions 
p, = 0.225 for distances 
Po = 0.0012 for azimuths. 

(5.18) 

These numbers are obtained as follows: The total di­
rectional weight is the number of directions times 
weight factor = 2.5E6 • I = 2.5E6. Similarly, the 
total distance weight is 30,000 • 2.5' = 1.875E5. This 
is degraded by 0.75 to 1.40625E5. The total azimuth 
weight is 3,000 •2·' = 750. The regular network has 
numbers of directions, distances, and azimuths in the 
ratio 8:2:2. Hence we solve the proportion 2.5E6 : 
1.4E5: 750 = 8p: 2p,: 2po to obtain, withp = I, the 
numbers in(5.18). 

The normals resulting from distances and azimuths 
are generally structured as shown by eq. (5.15). Table 
5.2 shows the numerical values for A,. 

TABLE 5.2.-Left-side normal equation coefficients 
A, (see eq. (5.15)) for regular distance and 

azimuth network. 

-p. 0 
0 0 +1 

0 -p, 

-p, 0 2pd+2pg 0 -p, 0 
0 

0 -p. 0 2pd+2pg 0 -p. 

-p. 0 
0 0 -1 

0 -p, 

-1 0 ' +1 ' s 
' r'. 

We may now imagine that (5.15) represents the 
superposition of the normals for directions, dis­
tances, and azimuths. Table 5.3 shows this superposi­
tion. We will not superimpose the Doppler measure­
ments, at least not as long as we deal with a network 
covering the whole plane. There is good reason for 
setting aside the Doppler-derived absolute positions. 
The relative measurements are of superior accuracy 
as compared with the absolute positions. The 130 
Doppler stations of the U.S. network provide a posi­
tional fix no better than llv'T30 m = 9 em. (See sec­
tion 5.4.) On the other hand, in an infinite network 
covering the whole plane, there would be infinitely 
many Doppler stations. These, together with the 
good relative accuracy of the other measurements, 
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TABLE 5.3 .-Normals for the idealized U.S. network, accounting/or directions, distances, and azimuths 

0.03125 0.03125 0.12500 0.06250 0.18750 0.00000 0.12500 -o.06250 0.03125 -o.03125 
+2 

0.03125 0.03125 0.06250 0.00000 0.00000 -0.06250 -Q.06250 0.00000 -o.03125 0.03125 

0.00000 0.06250 -o.5oooo -o.37500 2.00120 0.00000 -o.5oooo 0.37500 0.00000 -o.06250 
+I 

0.06250 0.12500 -o.37500 -o.5oooo 0.00000 -Q.47500 0.37500 -o.5oooo -o.06250 0.12500 

-Q.06250 0.00000 -Q.47500 0.00000 6.07740 0.00000 -Q.47500 0.00000 -o.06250 0.00000 
0 

0.00000 0.18750 0.00000 -2.00120 0.00000 6.07740 0.00000 -2.00120 0.00000 0.18750 

0.00000 -o.06250 -o.5oooo 0.37500 -2.00120 0.00000 -o.5oooo -o.37500 0.00000 0.06250 
-I 

-o.06250 0.12500 0.37500 -o.5oooo 0.00000 -o.47500 -Q.37500 -o.5oooo 0.06250 0.12500 

0.03125 -o.03125 0.12500 -Q.06250 0.18750 0.00000 0.12500 0.06250 0.03125 0.03125 
-2 

-o.03125 0.03125 -o.06250 0.00000 0.00000 -Q.06250 0.06250 0.00000 0.03125 0.03125 

-2 -I 0 +I +2 ' s ' r ', 
' 

TABLE 5:4.-Normals of the 8 x 8 finite element grid 

0.00000 0.00000 0.01071 0.00193 0.04106 

0.00000 0.00000 0.00193 0.00021 0.00000 

0.00021 0.00193 -o.40124 -o.00778 -o.44913 

0.00193 0.01071 -Q.00778 -o.40124 0.00000 

-o.00044 0.00000 -Q.44392 0.00000 3.26614 

0.00000 0.04106 0.00000 -o.44913 0.00000 

0.00021 -Q.OOI93 -o.40124 0.00778 -o.44913 

-o.OOI93 0.01071 0.00778 -o.40124 0.00000 

0.00000 0.00000 0.01071 -o.OOI93 0.04106 

0.00000 0.00000 -o.OOI93 0.00021 0.00000 

2 I 0 

would provide a position fix which is unrealistically 
good. Hence we omit the Doppler stations altogeth­
er. Disregarding their damping effect on the covari­
ance function of the coordinates, we may hope to ob­
tain conservative estimates. 

Next we assume a finite element grid superimposed 
on our regular network. Figure 5.13 indicates that 
any of the finite elements comprises 8 x 8 = 64 origi­
nal squares. In addition to our earlier grid coordi­
nates p, q, we introduce the coordinates jj, ij of the 
finite element corners as indicated in the figure. One 
step in jj, ij is equivalent to eight steps in p, q. The 
transformation (5.7), (5.10) is now applied to the 
normals, resulting in the normals for the corners of 
the finite element grid. Table 5.4 lists the resulting 
values. 

0.00000 0.01071 .-Q.OOI93 0.00000 0.00000 
+2 

-0.00044 -o.OOI93 0.00021 0.00000 0.00000 -
-o.ooooo -o.40124 0.00778 0.00021 -o.OOI93 

+I 
-o.44392 0.00778 -o.40124 -o.OOI93 0.01071 

0.00000 -o.44392 0.00000 -o.00044 0.00000 
0 

3.26614 0.00000 -o.44913 0.00000 0.04106 

0.00000 -o.40124 -o.00778 0.00021 0.00193 
-I 

-o.44392 -Q.00778 -o.40124 0.00193 0.01071 

0.00000 0.01071 0.00193 0.00000 0.00000 
-2 

-o.00044 0.00193 0.00021 0.00000 0.00000 

+I +2 ' s ' -' r ' 
' 

Assuming that (5.15) are the normals for a regular 
network, we apply a Fourier transformation intro­
ducinglU:(~,1J!), A(~,1J!) by 

LU:(~,tj!) = 

(5 .19) 

A(~,1J!) = 

The analysis applies to the original network as well as 
to the finite element network, with the understanding 
that in the finite element case, (p, q) is replaced by 
(jj, ij). The normal equations then transform into 

A(~,1J!) ~x(~,1J!) = ... (5.20) 



Properties of the U.S. Network 59 

~ 

<0 .,· . 

" " o- 10" 

.9= ~ 

00 
s· 8 
" " 
CT ;;:;. 
c:: IC:: 

0" 

~ 

This is a consequence of Parseval's relation, and is 
explained in much detail in Bartelme and Meiss! 
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Fourier transform of the inverse normal equation 
operator. 

One is tempted to apply a backward Fourier trans-
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formation to obtain the inverse normal equation 
operator as 

1 +n +n 

F.,= (
2
rr)' 11 e-;c.,.,., F(~,tp} d~ dtp. (5.21) 

Unfortunately, this integral does not exist. The 
reason is that F,. ~oo as V r' + s' ~oo (variances tend 
to infinity as the spacing between stations increases). 
In Bartelme and Meiss! it is shown in detail that, in­
stead of eq. (5.21), a substitute kernel F;, can be used 
that is defined by 

F;, = (2~)' jJ(I-e-n"•••')F(~,tp) d~ dtp. (5.22) 

This serves its purpose as a generalized inverse of the 
normal equation operator in the following sense: 

( •) F,;, is a solution of 

(5.23) 

Here I is the 2 x 2 unit matrix and d"' is Kronecker's 
symbol. 

(•) If a right-hand side/,., is prescribed to the nor­
mals 

(5 .24) 

and if the following consistency relation holds: 

(5.25) 

then the appropriate solution is obtained as 

(5.26) 

The Fourier transform u(~,tp} of u,,, follows from 

u(~,tp} = F(~,tp}f(~,tp}. (5.27) 

( •) It must be stressed that -F,;, is not positive 
definite. The relation 

(5.28) 

does not necessarily hold true for any/,,,. However 
(5.28) is valid if/,., satisfies the consistency relation 
(5.25). 

( •) Suppose that 

~ = ,};_~/,.,Ax,., (5.29) 

is an estimable function. The relations necessary for 
estimability are in (5.25). Recall that our present net 

is not absolutely positioned. It is sufficient that/,,, 
aside from fulfilling (5.25), has only a finite number 
of nonzero coefficients. It follows that the variance 
of the best estimate~ for~ is given by (5.28), i.e., by 

(5.30) 

( •) The following asymptotic expansion of F,;, 
holds: 

lim {F,;,- S log,Vp' + q'} = C+ D+ 
J•,q-co 2n 

(5.31) 
§ I '" + 2rr (y + log,n) + (2rr)' J S(T) log,lcos(T-a)l dr. 

Thereby a is defined through 

p = V p' + q'cosa 
(5.32) 

q = V p' + q' sin a 

y = 0.57721 56649 ... is Euler's constant. 
To explain the additional quantities in (5.31), the 

auxiliary function P(~,tp) is needed, which is homo­
geneous of degree -2 and accounts for the singularity 
of F(~,tp): 

F(~,tp} = P(~,tp) + 0(1), ~.tp~ 0. (5.33) 

FromP(~,tp) we get 

as well as 

Furthermore 

C= - 1- f 
(2rr)' •·~ 

S(T) = P(coST,sinT) 

- I s =-
2rr 

'" fS(T) dT. 
0 

I 
D = (Zrr)' f f P(~,tp) d~ dtp. 

-n<e~,'*'<+rr 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(See Bartelme and Meiss! (1974) for further details.) 

Table 5.5 lists sample values Of the kernel F,;, for 
the original idealized network (normals shown in 
table 5.3). Table 5.6 lists values of Fi• for the finite 
element network. The tables also include relative dis­
tance and azimuth rms errors between certain pairs 
of stations. The pairs are identified by their differ­
ence vectors. 
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The close relation between the two kernels is best 
brought out by comparing the asymptotic expan­
sions. For the original network we get 

F,;, = {0.1437llog, v p'+ q' + 

+ 0.26111} I+ <I> (a) + o(l). (5.38) 

The theoretical formula for the first constant 
0.14371 is(2rry(l+pd)(l+po) )-'. Confereq.(5.18). 
The symbol/ denotes the 2 x 2 identity matrix and 
<I>( a) comprises direction-dependent terms. Recall the 
definition of" in eq. (5.32). Table 5.7 lists sample 
values of <I>( a) which is a diagonal2 x 2 matrix. 

TABLE 5.5.-Sample values for kernel F,;,, for 
original idealized network 

p q 

0 

8 0 

8 8 

16 0 

16 8 

16 16 

.19577 .00000 

.00000 .15871 

.21875 .01501 

.01501 .21875 

.45407 .00000 

.00000 .46613 

.51019 .00050 

.00050 .51019 

.55273 .00000 

.00000 .56662 

.57173 .00016 

.00016 .58012 

.60963 .00012 

.00012 .60963 

Distance error 
azimuth error 

.6257 

.5634 

.6838 

.6383 

.9530 

.9655 
1.0106 
1.0096 
1.0514 
1.0645 
1.0710 
1.0755 
1.1043 
1.1041 

TABLE 5.6.- Values for F,c;, for finite element 
network 

0 

2 0 

2 

2 2 

3 0 

3 

3 2 

3 3 

.29568 .00000 

.00000 .29879 

. 32310 .00078 

.00078 .32310 

.38031 .00000 

.00000 .39208 

.39573 .00007 

.00007 .40255 

.43039 .00021 

.00021 .43039 

.43643 .00000 

.00000 .44925 

.44416 .00004 

.00004 .45479 

.46443 .00007 

.00007 .46971 

.49031 .00007 

.00007 .49031 

Distance error 
azimuth error 

.7690 

.7730 

.8048 

.8029 

.8721 

.8855 

.8912 

.8957 

.9280 

.9276 

.9343 

.9479 

.9437 

.9526 

.9655 

.9675 

.9903 

.9902 

TABLE 5.7.-Sample values of <I>( a} 

a 

0 
n/12 
rr/6 
rr/4 
rr/3 
Sn/12 
rr/2 

41n(a) 

-o.10704 
-o.10598 
-o.10314 
-o.09943 
-o.09591 
-o.09343 
-o.09255 

-o.09255 
-o.09343 
-o.09591 
-o.09943 
-o.10314 
-o.10598 
-o.10704 

Other values of <l>(a) follow from symmetry rela­
tions. The coordinate axes, i.e., a = 0, rr/2, are axes 
of symmetry. 

To properly compare eq. (5.38) with the corre­
sponding formula for the finite element network, we 
must transform eq. (5 .38) to the coarse grid pq, i.e., 
we must substitute (p, q) = (8jJ,8q). Calling the re­
sulting kernel F,-r•. we get 

F,-,'"' = {0.1437llog, v p'+ q' + 0.55984}/ + 

+ <l>(a) + o(l). (5.39) 

Now we compare this with the formula for the finite 
element grid: 

F;;,'" = {0.1437llog, V jJ'+q' + 0.38308}/ + 

+ <l>(a) + o(l). (5.40) 

The main asymptotic term is the same in both ex­
pansions. This term brings out the logarithmic law 
which holds for large networks. Also the direction­
dependent terms <l>(a) are identical. Only the con­
stant terms differ. They are appropriately smaller in 
the case of the finite elements, which apply a smooth­
ing to the original network. It has been beautifully 
demonstrated that this smoothing is only local and 
not global. 

The asymptotic difference between the two kernels is 

F;;.'"'- p,-r = o.n676/ + o<o . (5.41) 

This is of the same order of magnitude as the relative 
mean square errors between two neighboring stations 
in the original network. (See table 5.5.) 

5.6 Adopted Model for the Covariance 

Summarizing all results and discjissions of this 
chapter, we shall, as a basis for subsequent calcula­
tions, adopt the following model of the covariance 
matrix of the adjusted coordinates. For stations 
spaced farther than 300 km, the global covariance of 
section 5.2 will be used. Locally we superimpose two 
functions. The first one accounts for local "loose 
junks" of the network. It has a peak of value 
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(30 em)' at zero distance and tapers off to zero within 
a distance of 30 km. The second one accounts for 
local variations of the primary stations. It has a peak 
value of (20 em)' at zero distance and tapers off to 
zero within 300 km. As for the law of tapering off, in 
view of the logarithmic law we assume the following: 

C""'""(d) = ____!!!'_______log 
4 

. (5 .42) 
log4 I + 3 _E. 

do 

Here d is the distance between the two stations, do is 
the distance at which the covariance decreases to zero 
(30 km, 300 km, respectively). Po is the value at d = 0 
((30 em)', (20 em)'). The constant value 4 has been 
chosen somewhat arbitrarily. It could be replaced by 
other values, say 6 or g, without too much influence 
on the outcome. 

Superimposing the global covariance and the two 
local ones, we get 

C(d) = C'''"'"''(d) + ~log--4-'---.,--- + 
log4 1 + 3 d,.., 

30 

+__;]!_log 4 
log4 1 + 3 d,.., (5.43) 

300 

C(d) applies to latitude shifts as well as longitude 
shifts measured in meters. 

Identical peak expressions were assumed for all 
four covariance entries referring to the pairings(~.~) 
(~,A), (A,~), (A,A) between latitudes and longitudes of 
two stations. Actually, I believe the cross covari­
ances, i.e., those of the type (~,A), (A,~), do not have 
such large peaks. Admitting such peaks for them 
also, will help us to stay on the safe side. 

6. COUNT OF STORAGE LOCATIONS AND 
OPERATIONS 

In chapter 5 we analyzed properties of the U.S. 
network that are independent of the algorithm 
adopted to solve the normal equations. In a mathe­
matical sense, the inverse of the normal equation 
matrix does not depend on the way the normals are 
solved. Our next goal is to obtain estimates of the 
coefficients of the various reduction states that the 
normal equation system undergoes during its triangu­
lar decomposition. The zero reduction state is repre­
sented by the original equations. Although these 
coefficients are also independent on the chosen solu­
tion algorithm, it is convenient to analyze them to. 
gether with those of the subsequent reduction states 
which depend very much on the solution algorithm. 

The analysis of the size of these coefficients will be 

postponed until chapter 7. In this chapter we will be 
mainly concerned with number and pattern of the 
nonzero coefficients. Our general discussions on 
Helmer! blocking and the associated fill-in which was 
carried out in section 3.5.5 must be specialized to the 
case of the U.S. network adjustment. Again we have 
insufficient information. Since it is not known in 
detail how the stations are tied together by the obser­
vations, there is no way to tell, even after prescribing 
the block boundaries, which nodes will be junction 
nodes and which ones will be interior. Also, the block 
boundaries that will be used during the adjustment 
are not yet known. It has been decided though that 
the blocks will be rectangular. 

6.1 Specifying a Preliminary !llocking Scheme 

Based on the density distribution of the stations in 
the I 0 x I o quads, I have designed a preliminary 
blocking scheme whose only purpose is to provide the 
necessary rough estimates for the roundoff study. It 
is expected that a judicious choice of block bound­
aries, based on insight into the actual interconnec­
tions between stations, will reduce the fill-in more 
than our scheme does. Hence we can view the esti­
mates derived from our blocking scheme as being 
conservative. 

The density distribution of stations in the I o x I o 

quads was shown in figure 5.la; with some modifica­
tions to be explained in a moment, this illustration is 
repeated as figure 6.1. The density refers to all types 
of stations-primary triangulation, supplemental, 
and transcontinental traverse. Note that the values in 
figure 6.1 are divided by 10 and rounded. Our calcu­
lations are based on the original numbers. 

Figure 6.1 emphasizes the boundaries of the go x 
go quads to assist the reader in easily comparing it 
with figure 6.2 which illustrates the preliminary 
blocking scheme. The hierarchy of the blocks should 
be recognizable from the thickness of the dividing 
lines. The two heaviest lines, at latitudes 25° and 49°, 
symbolize the Mexican and Canadian junction 
nodes. 

Remark. Although not all these junction nodes 
are actually situated on the lines ~ = 25 o and ~ = 
49°, we pretend that they do during most of our com­
puter calculations, since this assumption makes the 
computer programs much simpler. Pseudo station 
occupancies were added in some of the I o x I o quads 
at latitudes 25° and 49° to account for this feature in 
our simulation model. In this way figure S .i a is 
transformed into figure 6.1. 

The whole network can be considered as one block 
of level 7. It is divided into two blocks of level 6 
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Figure 6.1.-Modified station occupancies of 1° x 1° quads. (Numbers shown are divided by 10 and rounded.) 
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shown by the next to the heaviest line at longitude 
95°. Each of the two blocks is subdivided into four 
blocks of level 5. The level 5 blocks are of varying 
size. The southeastern one is completely empty. The 
northern block of levelS is split into four blocks-the 
two southern ones only into two level 4 blocks. 
Downwards from the fourth-level blocks (these 
blocks are mostly 8° x 8°), a systematic pattern 
prevails according to the nested dissection scheme. 
Subdivision can stop at levels 3, 2, or I. Only in areas 
of dense control are first-level blocks of size I 0 x I 0 

found. 
Considering the pattern as being specified a priori 

down to the fourth level blocks of size 8° x 8°, the 
criteria for proceeding farther down to the third, sec­
ond, and first level blocks were the following: A 2° x 
2° quad was divided into four first-level I o x I 0 

quads if it contained more than I ,000 stations. Simi­
larly, a 4° x 4° quad was divided into four 2° x 2° 
quads if it contained more than l ,000 stations. 
Otherwise, a 4° x 4° quad was considered a third­
level block with no subdivision. As it turned out, no 
8° x 8° quads had less than I ,001 stations. 

6.2 Counting the Nonzero Coefficients and the 
Elementary operations 

The counts described in this section were derived 
with the assumption that the distribution of stations 

;cp ____ CD-\ 
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Figure 6.3.-Interior and boundary equations for a I 0 x 1° quad 
and its four neighbors. 

is uniform in any I 0 x 1° quad. Consider a I 0 x I 0 

quad together with its four neighboring quads at 
north, east, south, and west. (See fig. 6.3.) Assume 
that there are n stations in the quad and n'"', n<•>, 
n<•>, n<•> stations in the adjacent ones. We denote by i 
the number of interior stations of the quad multiplied 
by 2. By b., b., b., b. we denote the number of 
boundary stations multiplied by 2. The reason for 
doubling all these numbers is that any node has two 
coordinates and gives rise to two equations, i.e., to 
two rows and two columns of the normal equation 
matrix. We first assume that all adjacent quads at 
north, east, south, west are occupied by at least one 
station. We then calculate 

b.= b, = 2vn;<;, a=alb=cos(40") =0.8 

b, = b.= 2 V nla = b.! a (6.1) 

i = Max {2n - b. - b, - b, - b., O) 

The underlying assumption is a regular distribu­
tion in the quad with one row of stations at the inner 
side of each of the four boundaries (fig. 6.4). 

To be honest, our formulas do not yield quite the 
correct number of interior nodes (black circles) and 
boundary nodes (white circles) found in figure 6.4. 
With n=24, we get b.= b, = 8.6, b, = b.= 11.2. 
Considering that the corner nodes contribute to two 
boundaries each, we should actually have b. = b_, = 
6, b, = b. = 10. We neglect these deviations. They 
become less and less important as the number n of 
nodes increases. Our formulas are actually based on 
a continuous and smeared out distribution of sta­
tions. 

Having calculated i, b. to b. under the assumption 
that the neighboring quads all are occupied, we must 

1o 

0 0 0 0 

0 • • 0 

0 • • 0 ,a. 
0 • • 0 

0 • • 0 

0 0 0 0 

Figure 6.4.-Distribution of interior and boundary stations in a 
1° x l 0 quad. 
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consider modifications that take place if one or more 
of the adjacent quads are empty. It suffices to outline 
the case where n<•> = 0. We then put b~·· = 0, add b. 
to i and finally put b. = 0 afterwards. The reason for 
this is that if the adjacent quad is empty, there will 
never be a need for junction stations at the common 
boundary, should this boundary ever become a divid­
ing line between blocks. If n<•> > 0, we set 

b~·· = 2 ...rnwTa (6.2) 

and leave i as it was before. After treating the re­
maining quads similarly, the numbers i, b"' b., b., b., 
b_,(nl, b!.,"l, bJsl, bJw) are all calculated. 

Remark: Our formulas for calculating the number 
of boundary nodes are based on the assumption that 
this number increases with the square root of the den­
sity. This assumption may be questioned. However, 
it is consistent with our earlier assumption on ''in­
variance of regional redundancy." (See sec. 5.1.4.) 
Lines of vision must decrease when density increases. 
The rate of decrease equals the square root of the rate 
of increase of the density. Figure 6.5 shows an exam­
ple of a network that conforms with these assump­
tions. 

6.2.1 First-level counts 

A first-level partial block reduction is performed 
only at those I 0 x 1 o quads which qualify as outlined 
in section 6.1. As shown in figure 6.1, there are 124 
such quads, most of them (about 60 percent) near the 
east coast. 

In setting up the normals for a 1° x I 0 block, there 
will be i interior equations and a number j of junction 
equations that is obtained as (see also fig. 6.6) 

Figure 6.5.-ldealized example of a network with invariant 
regional redundancy. 

/ 
Jn " / ~ / I" 

J.;v I le 

" I/ is " I/ "- 7 
Figure6.6.-Interior and junction equations for a 1° x 1° block. 

j=j" +j. +j, +j. 

with ( cf. fig. 6.3) 

}., = b,. + b}") , },. = be + b!.,"l 

(6.3) 

(6.4) 

Assuming a uniform distribution of the interior 
nodes, there appears to be no more efficient ordering 
scheme than the one that produces minimum band­
width. Referring to figure 6.6, let the interior nodes 
be numbered row-wise from top left (northwest) to 
bottom right (southeast). Then number the northern 
junction nodes from left to right, then the southern 
ones from left to right. Finally, number the union of 
the eastern and western junction nodes from north to 
south. Our subsequent formulas will be based on this 
numbering scheme; however, the reader is informed 
now that, by rotating the figure around, alternative 
numbering schemes will be considered for selecting 
the most efficient one. 

Ordering the stations in the manner specified 
above will cause the normal equation matrix of the 
block to be profiled as shown in figure 6.7. After par­
tial reduction, only a few zero coefficients will re­
main within the profile. Hence we can identify the 
profile with the set of nonzero coefficients. Another 
quantity depicted in figure 6. 7, which has not yet 
been explained, is w, the "bandwidth," which equals 
the doubled number of interior equations in an east­
west row, i.e., it equals the quadruple number of sta­
tions in such a row: 

w=4J_i_*a. 
2 

(6.5) 

We will not count coefficients for the entire profile 
shown in figure 6. 7, .but rather only in the cross­
hatched area. This is more logical because of partial 
reduction associated with Heimerl blocking. The 
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Figure6.7 .-Profile of normal equations for a 1° x l 0 block. 

single-hatched areas will be counted at higher block 
levels. Also note that the sums of products, which are 
so typical for the triangular decomposition phase in 
Cholesky's algorithm, involve only coefficients with­
in the cross-hatched portion. Coefficients in the 
single-hatched area will only be modified by one sin­
gle subtraction (of a precalculated product sum). 
Counting coefficients in the upper part of the profile 
is about equivalent to calculating the area of this por­
tion of the profile. Note that the parameter x identi­
fies a diagonal position. The profile to be counted at 
this diagonal position has the value 

n(x) = Max{p(x)- d(x), 0}. (6.6) 

(Actually n(x) = p(x) - d(x) in the present case. 
Equation (6.6) also holds good for situations arising 
in a different, slightly more general context). 

The total profile to be counted equals the integral 
i+j i+j 

n = f n(x) dx = f Max{p(x)- d(x),O} dx. (6.7) 
0 0 

Because of the simplicity of the functions Ji..x), d(x) 
one can specify an algebraic formula, namely 

n = w'/2 + (i-w)w + ilo + i(j.+ }.)12. (6.8) 

Proceeding to the count of the elementary opera- . 
tiona! steps needed to partially reduce the normal 
equation matrix of a I o x I o block, we note that the 
number of elementary steps associated with diagonal 
position x and with coefficients in row xis 

i+j 

r••o•l (x) = 2) Min {Max(p(x) - d(x),O), 
(6.9) 

Max(p(y) - d(x),O)} dy. 

The factor 2 in front of the integral accounts for the 
fact that for any inner product term we have one 
multiplication and one addition. 

The number of elementary steps associated with 
diagonal position x and with coefficients in column x 
is given by 

1'"0 "(x) = ~/Min {Max(p(y)-d(y),O), 

Max(p(x)-d(y),O)} dy. 
(6.10) 

The total number of elementary steps is obtained in 
either one of the following ways: 

i+j i+j 

r = f 1'"""1(x) dx = f l'"""(x) dx. (6.11) 
0 0 

Because of the simplicity of p(x), d(x), we can speci­
fy the following algebraic expression: 

r = 2•[w'/6 + j,w'/2 + ((j,+}.)/i) w'/6 

+ (i-w)w'/2 

+ (i-w)j., w + ((i-w)'/i)(}.+ }.)w/2 + ij.,'/2 

+ ((i-w)/i) (},+ }.) w'/2 + i} .. (}.+ }.)12 

+ i(}.+ }.)'/6]. (6.12) 

Remark: Equations (6.6), (6.7), (6.9), (6.10), and 
(6.11) are general enough to extend to any partial 
Cholesky reduction scheme as soon as the functions 
p(x), d(x) are specified. We will also use these formu­
las in the subsequent sections. Equations (6.8) and 
(6.12) refer only to the first level counts. 

Remark: One more important aspect has to be 
stressed. Because of the unequal number of junction 
stations at the north, east, south, west boundary 
segments, it may be advantageous to number the sta­
tions in one of four different ways. Our notation 
refers to row-wise numbering of the interior stations 
from north-west to south-east. However, row-wise 
numbering from southeast to northwest can occa­
sionally result in a smaller n and, if n is chosen as the 
criterion for the efficiency of a numbering scheme, 
may be preferable. Two more alternatives must be 
considered, namely columnwise numbering from 
either northeast to southwest or from southwest to 
northeast. Columnwise numbering is associated with 
a different bandwidth, namely 

w = 4 v (i/2)/ 0:. (6.13) 
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The computer algorithms used to evaluate the counts 
in this chapter considered the four different number­
ing schemes, and the one which minimized n was 
chosen. 

6.2.2 Counts for 2° x 2° quads 

Several important new aspects enter when we pro­
ceed from I o X I 0 quads to 2° X 2° quads. On the 
other hand, 2° x 2° quads will be typical enough for 
counts of blocks having any size. 

A distinction must be made whether a 2° x 2° 
quad splits into four first Ievell o x I 0 quads or not. 
The second case, which we refer to as a "low count" 
for a 2° x 2° quad, will be treated before the first 
one; this will later be called a "medium count" for a 
zo x zo quad. The low count is concerned with 
blocks that do not decompose into smaller ones. 
Their interior stations never become junction stations 
for any block. The counting procedure is similar to 
the one for the low counts of the I 0 x I 0 quads 
described in previous sections; however, some com­
plications arise. Figure 6.8 shows the situation and 
adopted notation. 

Note, for example, the interior equations of i<••> 
also include the equations bJ••> and b,<••> of the 
north-western block because these equations do not 
play the role of junction equations. Similar conven-
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Figure 6.8.-lnterior and junction equations for a r X 2" 

"low"-level block. 

lions are adopted for the remaining three blocks. 
Elimination still proceeds row-wise from northeast to 
southwest. In the subsequent derivations it is as­
sumed that the union of the eastern and southern 
junction stations is numbered from north to south. 

The bandwidth must be calculated in a more com­
plicated way, e.g., for the northern two blocks by 

J j(nw) j jCnd 
w. = 4 -

2
-a + 4 -

2
-a. (6.14) 

The profile of the normals can appear as shown in 
figure 6.9. Here we have introduced, e.g., 

j(n) = ;cr~w) + jCne), jC•J = j<sw) + j(se) 

(6.15) 

Formulas (6.6) and (6.7) for then-type count apply 
without change if the whole block is considered. 
Also, the formulas for the r-type counts carry over to 
the whole block. However, we want the counts for 
the individual I o x I o quads making up the block. 
For the purpose of later calculations involving r 
counts, based on eqs. (4.35) and (4.36a), we will dis­
tinguish between row counts r,.,., and column 
counts r 1""" for a certain I 0 x I o quad. 

r•,••> is the number of elementary operational steps 
(during triangular decomposition) involving nonzero 
coefficients au, such that coordinate i is located in the 
I 0 x I 0 quad under consideration, while coordinates 
j can be anywhere. Similarly, r 1""'' is the number of 
steps involving nonzero au such thatj is located in the 
quad under consideration while i can be anywhere. 

We denote by IJ>q' 1},~""' 1 , 1},~" 11 the counts for quad 
(p,q), where in the present context (p,q) is one pair 
out of (n, w), (n,e), (s,e), (s, w). We arrive at the 
following equations: 

n,. = f n(x) dx = 
" 0e< (6.16) 

f Max{p(x)-d(x),O} dx. 
;a-~Qpq 

Here the notation x £ Q., indicates that the integration 
extends only over rows (strips of unit width) such 
that the diagonal position contributes to the quad 
under consideration. As for the r -counts, we have 

r,~~ow) =: I rcrow) (X) dx, 
:uQ,,q (6.17) 

~~~~0,, = I rcco/J<x> dx. 
xtQI"I 

For the definition of r<.o•>(x), r'"""(x) see eqs. (6.9) 
and (6.10). 

To indicate how these integrations can be orga-

L 
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Figure6.9.-Profile of normal equations for a2° x 2° low-level block. 

nized in practice, we give the expression for 1.1=.0 "'
1 as 

an example: 
'(nw) ;(n) 

1''""1 = -
1

- J 1''""1 (x) dx + ,... i<") " 

b(nw) i+i,\") b(nw) 

+ ";'--- J 1''""1 (X) dx + 
j,\") ; j~•u·) + j,!:"") 

i+j~") +/J·•l +jJ"") +i!.""') 
J 1''""1(x) dx. 

i'*:i,\") +:iJ·'l (6.18) 

This formula shows that we evaluate the interior con­
tribution from the union of the two northern blocks 
(first integral) and then take the portion referring to 
the northwest block (factor in front of the first in­
tegral). We proceed in the same manner for the con­
tribution of the northern junction equations, as well 
as the union of the eastern and western junction 
equations. 

Let us mention at this point that any integral in­
volved in a n- or 1-type count can be reduced to a 
sum of integrals whereby each summand is of the 
type 

A Bx+C 

J dx J (Dy + Ex+ F) dy. 
0 0 

(6.19) 

Hence, algebraic expressions can be specified for all 
integrals. The details are elementary, but quite cum­
bersome. Because of the piecewise linearity of p(x), 
d(x) (see fig. 6.9), any integral of the type shown in 
eq. (6.18) can decompose into quite a few terms of 
the type shown in (6.19); therefore, we refrain from 
documenting these formulas here. Computer pro­
grams were written to evaluate these formulas. A 
good check was provided by eq. (6.11), i.e., by the 
two independent ways to evaluate I. 

We mention that by rotating the block by a multi­
ple of 90 degrees, the n count based on a somewhat 
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simplified approximate formula was minimized. This 
simplified n count was obtained by lumping together 
all interior equations, as well as the northern, 
eastern, southern and western junction equations, 
and by using the 1 o x 1 o block formula eq. (6.g). 

Let us now turn to the case where the 2° x 2° quad 
is composed of four first level blocks. A "medium 
count" of a 2° x 2° quad must be performed. Figure 
6.10 explains the situation and the adopted notation. 

The interior equations split into four sets i"' ,;, i. 
i .. These numbers in turn are composed of boundary 
equation counts for the participating 1° x 1 o su!r 
quads, e. g. i., = bt"', + b~,,.,,. We form the union i ..... 
of i, and i •. The junction equations also split into 
eight sets, as shown in figure 6.10; however, it is ad­
vantageous to consider only two unions of junction 
sets, arriving at a northern and a southern set of 
junction equations: 

(6.20) 

We imagine the following station numbering: Set i,, 
precedes ;, which precedes i .. , which precedes j 1'', so 
that j<"' is last. Within any of the sets i,, to j<"' we 
assume the station numbering as random. 

/ .(nw) ""'/ j~nei "' / \. Jn / I""' / ~ 

'IJ!nwl n 

.(rm) . (ne) 
Jw 'n Je 

,._ -~wl 

"' v "' / 'e " / / 
""' 

'w / "' / "' 
. (sw) 
lw 's 

.(se) 
Je 

"' 1/ j~w) "' i/ ·(se) " "' "' 
ls / 

Figure 6.10.-Interior and junction equations for a 2° x 2° 
''medium''-level block. 

The profile implied by these assumptions is shown 
in figure 6.11. Similar considerations, as in figure 6.9 
and eq. (6.5) to (6.lg) lead to the corresponding n 
and r counts. 

Because the functions p(x), d(x) are quite simple, 
the following algebraic expressions for the total 
counts can be specified ( i ... total number of interior 
equations, j . .. total number of junction equations): 

n = i'/2 + U- ~<~ + j''') (6.21) 

r = 2•[i~/6 + i;(i,. + j'"')/2 + i;/6 + ;;u •• + j)/2 

+ i:./6 + ;;.u" + i,)/2 + u;.n + i,.i,)P'' + 

u;.n + i,.(i"+ i,))j'"' + P'''(i, + i,.)/2+ 

j'''j<"'(i, + i,.) + j'"'' i/2]. (6.22) 

Again we consider the individual n, r<•>, f 1'' 
counts for the four 1° x 1 o quads that comprise the 
block. The individual counts are affected by the as­
sumption of random station labeling within the sets 
i.,, i., i,.,.., j'") J jCs) • 

6.2.3 Remarks on the Counts of Larger Blocks. 

Low counts are also encountered with some 4° x 
4° blocks. The procedure is similar to that described 
in the previous sections, only the number of 1 o x 1° 
quads increases to 16 and the number of "block 
rows" increases to4. 

Medium counts for 4° x 4° (third level) and go x 
go (fourth level) blocks are quite analogous to those 
of the 2° x 2° blocks. This also holds for any larger 
block (fifth level and higher) that is composed of 
four sub blocks. The only new complication arises if 
the subblocks are not all the same size. Individual 
counts for n, f<•>, fl•l for !0 X !0 subquads are 
nonzero only for quads that contribute to the sets of 
interior and junction stations. 

At the fifth level and higher, there is occasionally a 
need to merge two subblocks instead of four. The 
situation and profile are shown in figures 6.12 and 
6.13 . 

The total counts are 

n = i'/2 + u 
(6.23) 

r = 2[i'/6 + i'j/2]. 

The individual! 0 X 1° block counts for n, f 1'', and 
f''' rely on the assumption that the node labeling is 
random within the two sets i,j. 

Finally, there is one "high count" for the last 
level, where the system is solved for the Canadian 
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Figure 6.12.-Interior and junction equations for a 2° x 2° 

"modified-medium" level block. 

r 
1'------ i --+------

f------ --

1 

I 

L ______________ _ 

Figure 6.13.-Profile of normal equations for a 2° x 2° modified 
medium-level block. 

and Mexican junction nodes. (The last level may con­
tain some other stations, which are neglected here). 
All stations are interior now. The global counts are 

n = i'/2 
(6.24) 

r = 2[i'/6J. 

The individual counts for n, r•'', and r'"' that com­
pose the block rely on the assumption of random sta­
tion labeling. 

6.2.4 Results of counts 

Table 6.1 lists the results for the global counts ac­
cumulated during levels 1 to 8. (Level 8 refers to the 
final count which applies to the Canadian and Mexi­
can junction station equations.) 

Then and r counts are listed for the various levels. 
The partial sums up to and including a certain level 
are also specified (columns headed 2). Because it is of 
interest to know how many interior and junction 
equations participate at the different levels, these 
numbers are also shown in table 6.1. 

Table 6.2 gives an alternative summary of the n 
and r counts, as well as of the numbers of interior 
and junction equations. It splits the numbers into 
three categories "low," "medium," and "high." 
Recall that a low block is one that does not decom­
pose into subblocks. (Such a block may be as large as 
4° x 4°). The high block refers to the set of Canadian 
and Mexican junction nodes. 

The results of the individual counts for n, r''', and 
r<d are shown in figures 6.14a-b through 6.15a-b, 
where the counts were lumped into 2° x 2° quads. In 
figures 6.15a-b the r''' and r'"' counts were superim­
posed because only the two sums will be needed later. 
Hence the sum of the r number over all quads must 
give twice the r value for the whole network, i.e., 2•r 
= 2•1.2E11 = 2.4E11. The counts along the north­

ern and southern boundaries (left and right bounda-

Table 6.!.-Summary of nand r counts for levels 1 to 8. 

Interior Junction n r 
Level equations equations 

Accum. Accum. Accum. Accum. 
Count count Count count Count count Count count 

~ ~ ~ ~ 

I 114,122 114,122 36,698 36,698 3.22E7 3.22E7 1.06EIO 1.06EIO 
2 159,514 273,636 73,990 110,688 4.50E7 7.72E7 1.56EIO 2.62EIO 
3 37,790 311,426 41,106 151,794 2.08E7 9.80E7 1.56EIO 4.18EIO 
4 10,660 322,086 21,500 173,294 1.35E7 1.12E8 1.92EIO 6.08EIO 
5 5,520 327,606 9,794 183,088 1.20E7 1.23E8 2.94EIO 9.02EIO 
6 3,192 330,798 4,068 187,156 7.90E6 1.31E8 2.07EIO I. II Ell 
7 1,062 331,860 1,944 189,100 2.63E6 1.34E8 6.61E9 1.18Ell 
8 1,944 333,804 0 189,100 1.89E6 1.36E8 2.45E9 1.20Ell 
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Table 6.2.-Summary of nand r counts for "low, ""medium," and "hi:;h" categories. 

Interior Junction 
Level equations equations 

Accum. Accum. 
Count count Count count 

:1: :1: 

low 282,930 282,930 100,100 100,100 
med 48,930 331,860 89,000 189,100 
high 1,944 333,804 0 189,100 

ries) are caused by assumed pseudo-occupancies 
needed to account for the Canadian and Mexican 
junction stations. (See the discussion at the beginning 
ofchapter6.) 

7. SIZE OF COEFFICIENTS DURING 
TRIANGULAR DECOMPOSITION 

In this chapter we will try to gain more insight into 
the behavior of the . coefficients a,~>, /J!'', 
O.;,p<i<0.;,n. These are the coefficients of the various 
partially reduced sets of normal equations. In chap­
ter 3 (particularly sections 3.2 and 3.5) it became 
clear that the partially reduced normals are typical, 
not so much for Cholesky's method, but rather for 
any direct elimination method combined with a cer­
tain ordering strategy. A geodetic interpretation of 
the coefficients al)', bl'' was already given at the end 
of the ~ection 3A This interpretation is valid for any 
geodetic network, however pathological it may be, 
and therefore it is not sufficient for estimating the 
size of the coefficients. Our task in this chapter is to 
specify the properties of the coefficients that follow 
from properties of the U.S. network and the chosen 
solution algorithm. 

7 .I Left-Hand Side Coefficients 

For a moment, let us pretend that Cholesky's algo­
rithm is executed in the fashion outlined by eq. (3.16) 
at the end of section 3 .2. We now investigate for 
fixed i,j; how alJ' changes as p proceeds from 0 to 
i-1. (It cannot proceed farther because equation i is 
then next for pivoting.) Although Cholesky's algo­
rithm will be executed in a different way, our proce­
dure is logical as long as we are interested only in the 
size of the coefficients rather than in the way the 
roundoff errors accumulate. Note also that the com­
plete history of a.~' gives us information on the par­
tial sums of the product terms r,r,1 because 

n r 

Accum. Accum. 
Count count Count count 

:1: :1: 

7.65E7 7.65E7 2.35EIO 2.35EIO 
5.75E7 1.34E8 9.41EIO 1.18EII 
1.89E6 1.36E8 2.45E9 1.20EII 

7 .I. I Station situated in interior of lowest level 
block 

Suppose coordinate i belongs to a station that 
never contributes to any barrier between blocks. 
Coordinate i then will be eliminated at the lowest 
level. Before this happens; the coefficients alf' of 
equation i will undergo changes asp proceeds from 0 
to i-1. Clearly, no real change will occur as long asp 
has not yet reached any coordinate that belongs to a 
station which is either identical with that of coordi­
nate i or that is being connected to that station by a 
measurement. In section 3.3 we discussed that two 
stations are connected by a measurement if there is 
either a distance, azimuth, or direction measured be­
tween the two stations, or if the two stations are co­
observed directionally from a third station. If p 
reaches such a coordinate for the first time, some of 
the coefficients al)' of equation i will change; in par­
ticular, the diagonal element a,'!' will be diminished 
by a positive amount. 

Let us discuss the changes of al)> qualitatively in 
light of an example. Figure 7 .I shows a lowest level 
block. The ordering of the interior stations is as­
sumed to be more or less row-wise from top left to 
bottom right. Stations with previously eliminated 
coordinates are indicated by black circles. Recall that 
the two coordinates of a station are always lumped 
together. For definiteness we can assume that the 
latitude precedes the longitude. Let us focus on the 
two equations associated with the station labeled Q. 
As long as the elimination of the interior nodes has 
not reached the station labeled Po, no change occurs 
to the coefficients in the equations of Q. 

Let i refer to the longitude of station Q. Then the 
coefficient a/fl is the reciprocal variance of station 
Q's longitudinal shift, provided that coordinates i, k, 
1 ~k~p, are free, while coordinates k, p<k~n, ko:foi, 
are fixed. Note that the fixed coordinates include sta­
tion Q's latitude. The variance of Q's longitude does 
not change as long as Q is connected by observations 
to stations which are all fixed. As the latitude of Po is 
eliminated, one of the coordinates to which Q is an­
chored ceases to be fixed. It becomes elastic, so to 
speak. As a consequence, station Q' s coordinates will 

----~~~-~~~~-~~~~~~~~~~~~--~ 
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Figure 7 .I.-Sample of a lowest level block with about 50 percent of the interior stations eliminated. 

have somewhat larger variances. Since air' is a recip­
rocal variance, it decreases. Eliminating P, or at 
least one of its coordinates, suddenly causes a num­
ber of connections to occur between station Q and 
other stations, namely stations P, through P,.. These 
connections are mostly established by fill-in coeffi­
cients. To illustrate this, imagine that P,, is shifted 
away from its adjusted position. The bundle in P, 
will transmit this movement(in general) to all the free 
black nodes. The bundle in P, will transmit this 

movement to Q which, in this context, is also con­
sidered free. 

As the coordinates of station P, toP,. are elimi­
nated, the alf' will change continuously. The changes 
will be very small if a faraway station like P, is 
freed. The changes will be most noticeable when the 
immediate neighbors of Q are treated. After P,. is 
eliminated, i.e., has become a free station, and after 
Q's latitude has been eliminated, equation i (Q's lon­
gitude) is next for pivoting. How much has alf' 
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changed during this process? We consider two ex­
treme cases. 

(I) Station Q is not involved in any measurement 
of high-precision accuracy. In this case Q is con­
nected to its neighbors by measurements of normal 
accuracy. Even if all the neighboring stations are 
fixed, as well as the latitude of Q, the longitudinal 
shift of Q will have an appreciable variance, which 
may amount to a few centimeters. Throughout this 
discussion we assume that all coordinate shifts are 
scaled to the meter. Then it follows that alJ 1 = au will 
be of the order of magnitude of 10' to 10'. The 
variance of coordinate i will not dramatically change 
if some of Q's neighboring stations are freed. It will 
increase, it may double or triple, but it will not be 
multiplied by several powers of 10. To be conserva­
tive, assume that it is multiplied by 10. The coeffi­
cient a!!'' will correspondingly decrease to about 10' 
to 103

• It follows that au = a,\•1 is representative for 
the size of all a/f' and o.;p<.i. 

(2) Station Q is tied to another station by a very 
precise measurement. Let us assume that station Q is 
connected to station P, by a distance of I mm rms er­
ror. The coefficient au = air' then will be of the order 
I 0'. As long as P, is held fixed, the combined effect 
of the precise distance and the fixed latitude of Q will 
cause a very small variance of the longitude shift of 
Q. Hence, a!!'' will be of the order of magnitude 10' 
as long as station P, is untouched. Once the latitude 
of P, is freed, i.e., is made elastic, things change 
drastically. A sharp drop in the accuracy of coordi­
nate i occurs, and alf' will consequently drop to 
about 10' to 10'. This is, of course, the most feared 
wiping out of leading digits. The subsequent elimina­
tion steps will not cause any further dramatic change 
in the size of a,.<t 1• 

What is the consequence of the sharp drop in the 
size of a!!'' upon the local roundoff error at position 
(i, i)? To answer this question we must go back to the 
manner in which Cholesky's algorithm is actually ex­
ecuted. The transition from a,\o 1 to a;\~- 11 is done ac­
cording to 

i-1 
aJJ-t> = a.c.o>- ~ r .r · 

" " lr::J lr• "'. 

The sum is evaluated and then subtracted from a,.\-•1• 

Let p correspond to the latitude of P,. Then the terms 
r.,r,, I .;k<.p, will be small. The elementary roundoff 
errors arising from computing and summing the 
product terms will provide only small contributions 
to the local roundoff error affecting au. The term 
r,.,r,,, will be large. The elementary roundoff errors in 
evaluating and adding it will be large. Moreover, by 

now the partial sum of the product terms has become 
large. This means that all further modifications to it, 
caused by the elimination of stations P,o toP"' will 
produce large contributions to the local roundoff er­
ror at au. Finally, the sum is subtracted from a,\•1, 

and this will cause another large elementary roundoff 
error. 

To complete the story, we must consider the lati­
tude of Q as well as the latitude and longitude of P,. 
It is preferable to switch the indices of the equations. 
We let i refer to the latitude of P,; i+ I consequently 
refers to its longitude, j, andj+ I refer to the latitude 
and longitude of Q. (See fig. 7.2.) All original coeffi-
cients 0;;, O;,i+b O;i, O;J+h O;+t,i+t• G;+tJ• O;+tJ+h Qii• OJJ+h 

ai+l..i+h will be large unless, by coincidence, P9 and Q 
happen to have either nearly the same latitude or the 
same longitude. The coefficients remain large until i 
is eliminated. Then they all drop sharply in size. 
What about the associated roundoff errors? Assum­
ing that there are no further high precision observa­
tions in the near vicinity, and applying similar rea­
soning as in the preceding paragraph, we arrive at the 
following statements: 

• All product terms r.,r., will be of moderate or 
small size. The first bad elementary roundoff error 
arises when the sum of these product terms is sub­
tracted from a,\•1 to give a,\'-"· Note that a,\'-" is still 
large. At this point no leading digits have been wiped 
out. It is an oversimplification to associate bad 
roundoff errors generally with a loss of leading 
digits. A second bad roundoff error occurs when the 
square root is taken of the large coefficient a,\'-' 1, 

• A similar statement can be made about the coef­
ficients a,,i+., au. a,J+•· The product sums subtracted 
from these large coefficients will be moderate, caus­
ing only two bad roundoff errors per coefficient; 
when the product sum is subtracted from the large 
coefficient and when division by ru 1/ a,\'-" takes 
place. ' 

• Of all product terms rk,l+trk,i+h whose sum will Qe 
subtracted from a\!'Ai+h only the last one, i.e. 
r,,,.,r,,,.., will be large. Hence, three bad elementary 
roundoff errors will occur: when r,, 1+lr;,i+t is evaluat­
ed, when this term is added to the previously accumu­
lated partial sum, and when the sum is subtracted 
from a~·~L·+~· A similar statement can be made about 
the coefficients a,.+,,J and ai+,,J+I• No bad roundoff er­
rors are caused by taking the square root and by divi­
sion. At that time the coefficients have already 
dropped in size. 

• Again there will be only one large outlier among 
the product terms r,1r,1 whose sum is to be subtracted 
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Figure 7 .2.- Left-side normal equation coefficients of two connected stations, as discussed in the text. 

from ajj1• This time, however, the outlier is not the 
last term. It is of course, ruru, which is followed by 
the moderate terms r,1r,1, i<k<J. By being added to a 
large sum, these moderate terms will all cause bad 
elementary roundoff errors. They, in turn, will con­
tribute unfavorably to unavoidable roundoff errors, 
namely those associated with ruru and with the sub­
traction of the product sum from a)J'. A similar 
statement can be made about the coefficients at a1J., 

The following lesson can be learned from this ex­
perience: It is extremely disadvantageous if two sta­
tions which are strongly coupled by a very precise 
measurement are not assigned consecutive numbers 
in the ordering scheme. The more stations included 
between the two stations, the more product terms of 
the type '"i'"i' rkjrkJ+h rk.J+trlcJ+l will be added to an 
already large partial sum and, consequently, the 
more bad elementary roundoff errors will occur. 

Remark: If one takes into account a slight com­
plication of Cholesky' s algorithm, the number of bad 
elementary roundoff errors can be reduced to 2 per 

coefficient au. We have seen that when a station is in­
volved in one very precise measurement, essentially 
only one product term r,,r,1 will be large and nearly 
equal to a!J'. Let this product term be r,.,r,,1• If we cal­
culate 

as (7 .2) 

the operations being carried out, as indicated by the 
braces, then only two bad elementary roundoff er­
rors occur: one when rp,rp1 is evaluated and the other 
when this term is subtracted from a!J'. The result of 
this subtraction will be a moderately sized quantity, 
and so will be all further operands. Modifying 
Cholesky's algorithm in the indicated way does not 
require much programing effort. The main objection 
may be that speed suffers greatly. The inner product 
evaluations represent the innermost loop. If a test for 
size is placed into the inner loop, speed may decrease 
as much as 30 to 50 percent. However, a slight addi­
tional complication could restore much of the origi-
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nal speed. A test for size is necessary for only those 
coefficients au that were originally very large. The 
majority of stations will not be involved in very pre· 
cise measurements. The coefficients in the corre­
sponding rows and/ or columns of the normal equa· 
tions will be small from the beginning. Hence the test 
for size of the product terms can be bypassed when 
these coefficients are treated. It may be worthwhile 
after all, to consider the following modification for 
partial reduction of the NGS Cholesky algorithm 
(which can be compared with eq. (3.15) in section 
3.2): 

FORj = I TOn+ I 
FORi= I TO MIN(n,j) 

SUM= 0 
IF both AU,j) and A(i, i) are large, GOTO 

label(Ll) 
FORk= I TO MIN(p, i-1) 

SUM= SUM+ A(k,i) •A(k,j) 
NEXTk 
GOTO label (L2) 

(Ll): SUM! = 0 
FORk = I TO MIN(p, i-1) (7 .3) 

HELP= A(k,i) •A(k,j) 
IF (HELP is small) THEN SUM = SUM + 

HELP; 
ELSE SUM! = SUM! + HELP 

NEXTk 
A(i,j) = A(i,j)- SUM! 

(L2): A (i,j) = A (i,j) -SUM 
IF (i.;;; MINU-l,p)) A(i,j) = A (i,j)! A (i, i) 

NEXTi 
IFU.;;;p)Au,j) = VAUj) 

NEXTj 

This algorithm also takes care of those situations 
where a station is involved in more than one very 
precise measurement. Let us briefly review a case 
where coordinate i belongs to a station that takes part 
in a cluster of m tightly connected stations. (See figs 
7 .3, 7 .4.) In equation i there may be more large coef­
ficients, 2m in the worst case, when i precedes all 
other coordinates of the cluster in the sequence of 
elimination. If i is the last coordinate in this se­
quence, then only one large coefficient will be pres­
ent. The moment when all coefficients are either past 
elimination or have dropped to moderate size may 
not occur until a coordinate of the last two remaining 
stations is eliminated. This is true when the cluster 
forms a rigid system. The situation may be slightly 
more favorable if the cluster consists of several rigid 
limbs which are pin-jointed. The modification of 
Cholesky's algorithm will keep the number of bad 
roundings down to a number which is approximately 
equal to 8 m'/3. 

7 .1.2 Station situated on a block barrier 

Consider the normals of a certain block for which 
station Q plays the role of a junction station. The 
coefficients in the equations of its two coordinates 
are not all fully assembled. Coefficients connecting 
station Q to interior stations of the block are fully 
assembled. Other coefficients may be incomplete. In 
any case, the diagonal coefficients are incomplete. If 
the block is not one of the lowest levels, the coeffi­
cients will be partially reduced. The reader is referred 
to section 3.5.5, which describes the interplay of as­
sembling and reducing the normals typical in Hel­
mer! blocking. 

After combining the blocks properly, station Q 
will eventually become an interior station of a certain 
higher level block. At that instant all coefficients in 
the Q equations will be fully assembled and at the 
same time partially reduced. 

If station Q is not involved in a high precision 
measurement, the history of the coefficients alf' in 
the equations of its coordinates is not very dramatic. 
Of course, the history is no longer represented by a 
linear row Of coefficients but, instead, by a tree 
branching out toward the past. This is because the 
station may be actively involved (i.e. with nonzero 
coefficients) in more than one block of a certain 
level. The tree does not have too many branches, 
though, because in nested dissection as shown by fig­
ure 3.6, a station will never be actively involved in 
more than four blocks of the same level. In fact, a 
regular node, situated in a level i set, will be involved 
in two sets within any of the levels I to i-1. (See sec­
tion4.3 and fig. 4.1.) 

The diagonal elements will not undergo any large 
changes. Just before station Q is eliminated, these 
coefficients will not be much smaller than, say, 1/10 
of the size of the full original normals. The size of the 
full original normals will be 10' to 10', just as in the 
case of a nonbarrier station considered in the previ­
ous section. At present, we are not very concerned 
with the off-diagonal elements. Because any2 x 2 de­
terminant of the normals in any reduction state must 
be positive, an off-diagonal coefficient will never ex­
ceed the harmonic mean of the two diagonal coeffi­
cients located in its row and column. Unfortunately 
this simple estimate is not of much use because it 
leads essentially to the unfavorable preliminary 
global roundoff error bounds of section 4:1 .4. In sec­
tion 7 .1.3 we specify more useful estimates of the 
off-diagonal coefficients. 

Meanwhile let us qualitatively discuss the case 
where a station Q, usually located at some barrier, is 
connected by a high precision measurement to a sta­
tion P. Consider the partial reduction of a block in 
which Q serves as a junction station. It is necessary 

----~----------------------
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for the block to be from a lower level than Q itself, 
which we denote by k. Let i, i+ 1, j, j+ 1 denote the 
sequence numbers of the coordinates of the stations 
P, Q, respectively. As long asP, Q are not eliminat­
ed, the coefficients a~f', a~~~~~~ a1) 1, a~~A,, a~~Lw 
a~L. a~~~J+l' a1~ 1 ,a)~~~~ a~L·u are all large. (Again 
we disregard the degenerate case where P and Q have 
nearly the same latitude or longitude). We discuss 
several subcases: 

(1) Station Pis an interior station. Because of the 
assumed regularity of Q, P must be of the lowest 
level. Reasoning as in the previous section, we arrive 
at the following conclusions: 

(*) The coefficients a}f' 1, a~~~~1, a1.f 1, a~~}+l never drop 
sharply in size before equation i is selected for 
pivoting. 

(*) Coefficients a~l,1.,, a~~LP a~L,.u a]f 1, a);).u 
aY+l,1., drop sharply when equation i is eliminated. 

(•) If the modified algorithm for partial Cholesky 
reduction is used (specified in the previous section), 
no more than two bad roundoff errors can occur for 
any large coefficient. 

( •) If the standard version of the algorithm is used, 
two bad roundoff errors will occur at a,,, a,,i+" a,1, 

a,.;.,, and three bad roundoff errors at ai+,,i+., a, .• ,J• 
ai+IJ+I· Many bad roundings can occur at any of the 
coefficients a11, a1.; • ., a1.,,1., if many interior stations 
are located subsequent toP in the ordering sequence 
of the current block. 

(2) Q is tightly connected to another station P 
which is in the same barrier set. P is also assumed to 
be regular. Although P and Q are involved in several 
level I block reductions (l<k) the strong connection, 
which is caused by an observation, is always uniquely 
assigned to one block of a certain level. Hence, for a 
prespecified block !,eve!/ (l<k) there will be only one 
block in which the a, to a1.,.1., are large. On the other 
hand, such a block can be encountered for levels /, 
with I proceeding from 1 to k-1. Hence, altogether, 
there can be k-1 blocks where these coefficients are 
large. It follows that: 

( •) There will be one bad rounding per large coeffi­
cient for any level/ block in which the coefficients are 
large. Therefore, as long as level k is not reached, 
i.e., as long as P, Q are junction nodes, there will be 
k-1 bad roundings. 

( •) If the two stations are regular junction stations 
(see section 4.3.1), there will be one additional bad 

rounding per large coefficient at the moment when 
the k-level block is assembled from its k-1 level 
subblocks. If the stations are singular, more bad 
roundings can be expected, but their numbers would 
hardly exceed three. 

(•) At level k, P and Q become interior nodes and 
essentially the same reasoning applies as for interior 
nodes at the lowest level. Quantitatively, one has to 
bear in mind that many connections exist between the 
stations, resulting from fill-in at the lower levels. 

The following can be learned from the above 
statements: If the standard version of Cholesky's 
algorithm is used, avoid if possible junction stations 
that are strongly coupled. The modification takes 
good care of couplings between barrier stations and 
nonbarrier stations. Strong ties between barrier sta­
tions at high levels should be avoided under all cir­
cumstances. 

7 .1.3 Bounds on off-Diagonal elements 

The preliminary bounds derived in section 4.1.4 on 
the global left-hand side roundoff errors were bad 
for several reasons. One reason is that a single bound 
II all was used on all nonzero elements of the normal 
equation matrix and its reduction states. This is a lux­
ury one cannot afford. Even if the U.S. network did 
not have the much lamented high precision ties be­
tween closely situated stations, and even if it were 
fairly homogeneous with respect to configuration 
and weights, the coefficients of the partially reduced 
normals would differ greatly in size. Recall that 
alf'laN'' is the negative shift that coordinate i suffers 
if coordinatej is forced away by one unit from its ad­
justed position, if coordinates i, k, I <5;k<5;p, are free, 
while coordinates k, p<k<5;n, kFi,j, are fixed. The 
farther away coordinate j is from coordinate i, the 
smaller the movement of i will be, in general. Hence, 
one should expect that the coefficients alf', i<j, taper 
off as the distance between the two involved stations 
increases. 

Loosely speaking, our global estimates on the left­
hand side roundoff errors are weighted sums over 
either absolute values or squares of the coefficients 
a!f'. Although this may not be apparent from the for­
mulas-at the end of section 4.1.3, which appear to be 
weighted sums over E{£;;), o'{•u) we draw support for 
our assertion because E{•u). o'{•u) are closely related 
to the size of the coefficients a!y'. We will clarify this 
in section 9.4. Meanwhile, we should feel sufficiently 
motivated to take a closer look at the following 
norms of the upper diagonal portions of the rows of 
AW, the partially reduced normal equation matrix 
for the coordinates i, p<i<5;n: 
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lla?''ll, =~laW'I 
.1~· 

ll a.(p'll, = v 2la'"l'· I. j";!>f IJ 

(7 .4) 

(7 .5) 

We will try to derive bounds for these norms which 
rely on: (I) the positive definiteness of A'fl, (2) the 
size of the diagonal element a!!'', and (3) the spectral 
norm of the original normal equation matrix. 

Item (3) deserves some explanation. The spectral 
norm of the original normal equation matrix A 
equals the largest eigenvalue AM,, of A. Of course, no 
one will go to the trouble of calculating this eigen­
value exactly. Good bounds on AM,, are easily avail­
able. One of them is the row-sum norm of A. This is 
the largest row-wise sum of the absolute elements of 
A. Because A is sparse in the sense that a,, * 0 only 
for coordinates which are connected by measure­
ment, the row-sum norm of A will not differ too 
much from its largest element. It can differ from it by 
a factor amounting to the largest number of nonzero 
elements in a row. 

We next introduce x:~P 1 , the number of nonzero 
elements ag' 1, j'?J:.i, to the right of, and including, the 
diagonal element a!r'. We are now ready to prove the 
following: 

Proposition 7.1. 

llal'' 1 11~ ~ V x:!'o) aN') AM ... ,. (7.6) 

(7.7) 

Proof' The proof relies heavily on Schwarz's inequal­
ity which, for a positive definite matrix M and two 
matching vectors x,y, can be specified as follows: 

xT My.;, v xT M x yT My. (7 .8) 

To extract the i-th row of A~'i, we introduce the vec­
tor e which has a I at position i and zeroes elsewhere. 
In order to form the norm lla,"''ll, from the upper 
diagonal elements in row i, we introduce a vector w 
which has elements 

~~ = 0, j<i 

w1 = sign (ag'l), i:({)~n. 

It would be logical to attach the index ito e and w, 
but we refrain from doing so to avoid bulky for­
mulas. We now write 

lla.'!'ll, .;,,~ la.'J'I = J, ag'' sign(alJ') = 7alJ' w1• 

Hence, 

lla?''ll, = eTA'fl w. 

Applying Schwarz's inequality with M = A'fl, x = e, 
y = w, we deduce 

II a.'!' II,.;, v {eTA~{,' e}{wTA\fi w} = 

= v alt' { wT AI{,' w}. 

Since Azz- AW equals AztAifAn, and therefore is 
positive senlidefinite, it follows that the largest eigen­
value of AI{,' is bounded by the largest eigenvalue of 
A,. The largest eigenvalue of A,, in turn, is 
bounded by the largest eigenvalue AM,, of A. It 
follows that wT AI{,' w.;, AM,, II wll'. Noting that II wll' 
= >cl'', we have established the first part of the prop­
osition. 

As for the second part, we start with 

II a''' II'= 2 lal•'l'.;, 2la(p'l' = {A''' e}T {A''' e} = I. 2 j";l>i J j IJ 22 22 

Again we apply Schwarz's inequality, but this time 
withM = AW, x = e, y = A'fi e. The result is: 

The first term under the square root is a!f'', the sec­
ond one is bounded by AM,, e' AI{,' AI{,' e. Dividing the 
whole equation by veT AI{,' Alfie yields the desired 
result. 

Remark: Leveling networks have the remarkable 
property of diagonal dominance and nonpositive off­
diagonal elements. It holds that 

2 alJ' -., 0 for p<i.;,n, alJ' .;, 0 for joFi. (7 .9) 
I'<'"-" 

As these eq~ations indicate, the properties hold not 
only the original normals but also for any set of par­
tially reduced normals. Combined with the obvious 
fact that air' > 0, one arrives readily at the following 
upper bounds for llal!'ll, and II a!'' II,, which are much 
better than those of proposition 7 .I. (See Bartelme 
and Meiss11977). 

(7 .10) 

I strongly believe for reasons explained in section 
9.4 that the U.S. network behaves in many ways like 
a leveling network. In particular, when the interior 
stations of a block are eliminated while the junction 
nodes form an impenetrable barrier, the behavior of 
the alJ' is believed to closely resemble a leveling net­
work. Hence I believe that in most instances proposi­
tion 7.1 overestimates the row-sum norms llai!'ll, 
lla.'!'ll>- On the other hand, it is very difficult to make 
quantitative statements about how close the U.S. 
network comes to a leveling net. We will speculate 
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more on this in chapter 9. First we need to aim at safe 
estimates which are based on firm grounds. 

If we apply the bounds of proposition 7.1 to the 
U.S. network with all its local weight singularities, 
we obtain only a marginal improvement over the 
earlier estimates in section 4.1.4. Therefore we will 
proceed along a different route and consider a hypo­
thetical U.S. network which has the local weight sin­
gularities removed. Afterwards, we will consider 
modifications of the derived estimates resulting from 
weight singularities. These modifications will rely on 
theoretical considerations undertaken in the next 
subsectim\. 

7 .1.4 Transforming away the weight singularities 

We do not anticipate that the transformations dis­
cussed in this section will actually be applied to the 
network during the process of adjustment. This 
would cause complications in the computer programs 
as well as much additional manual labor. The trans­
formations are merely supposed to provide theoreti­
cal support for the prediction of the increased global 
roundoff resulting from the high-precision ties be­
tween closely situated stations. 

Let us try to make things clear by- assuming that 
the network has only one ·exceptionally accurate 
observation, which is a distance between the neigh­
boring stations P, Q. Denoting, as usual, the se­
quence numbers of the coordinates by i, i+ 1, j, j+ I, 
we first consider the normal equations for this dis­
tance observation alone. The coefficients are given in 
table 7.1. 

TABLE ?.I.-Coefficients of contributions to the normals from 
one distance observation before transformation. 

row i i+ l j j+ 1 

i pee pes -pee -pes 
i+ 1 pes pss -pes -pss 

j -pee -pes pee pes 
j+ 1 -pes -pss pes pss 

In table 7 .1, c,s denote cosine and sine of the azimuth 
from P to Q; pis the weight of the distance which is 
assumed to be large, i.e., about 10'. Actually, these 
coefficients refer to a plane network. The· modifica­
tions to the ellipsoid are quantitatively irrelevant in 
the present context, if we assume that latitude and 
longitude increments are scaled to the meter. 

Next, imagine the normals formed for the other 
observations of moderate weights. The coefficients 
will be of the order of 10' to 10'. The combined nor­
mals are obtained by addition. At the intersections of 
rows and columns i, i+ I, j, j+ 1, small disturbances 

will be added to the large coefficients of table 7 .I. At 
all other locations the coefficients will be small. 

Let us take a look at the global effect of the 10 
local roundoff errors E.;;, E.;,;+u E.;h E.;,j+u E.i+l,i+h E.i+l,i' 

E.;+IJ+l, E.jj, E.jJ+l, E.j+IJ+l. Since the corresponding coef­
ficients are of magnitude 10', the local roundoff er­
rors will be in the range at least /J-'•10'. Their global 
effect upon coordinate k is obtained from formula 
(4.34) in section4.1.3: 

(7 .11) 

Coordinates i, i+ 1, j, j+ I are nearby because they 
are connected by the precise distance. If coordinate k 
is also near, the elements of the inverse/lei, .h,i+IJ fki• 
J,.J .. will be relatively large, with magnitude 10-· 0 If 
we use llxll as the bound for the coordinate shifts Cllxll 
may be as large as 10 m), we see that~' will be of 
magnitude at least fJ-• 10' Jlxll· 

We shall now transform away the weight singulari­
ties by a parameter transformation. The transforma­
tion will be local; only the coordinates of the two sta­
tions P, Q will be involved. Originally we have x, = 
l!~p, Xi+t = ll.ryp, xi = 11~ 0, xi+' = llry0 , where ~p, "71,, 

~0 , '1o are coordinates of the stations P and Q. 
We replace ~ 0 , '1o by polar coordinates Q,0 , t,0 of Q 
with respect toP. We have: 

~0 = ~" + Q,0 cost,0 
(7 .12) 

1"/o = I'Jp + Qpo sin ~Po· 

Linearizing and omitting the subscript PQ we get: 

/;~ 0 = /;~, + cAQ -Q sAt 
(7.13) 

AlJo = AlJ, + SAQ + Q eM 
c and s are, of course, cosine and sine of t = t,0 • 

Their meaning is the same as in table 7 .I. 
If we transform only the normal equations due to 

the precise distance, the pattern of coefficients shown 
in table 7 .I changes over into one given in table 7 .2. 
Only one coefficient is not zero. This is no surprise 
because the observation refers precisely to the new 
parameter AQ,0 and tells us nothing about the other 
three. 

The normals of the other observations will now be 
subjected to the same transformation. This will not 
cause the small coefficients around P, Q to increase 
significantly in size. After adding the two sets of nor­
mals we will have one large coefficient at a"' We will 
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show that the global effect of the local roundoff error 
t, at this coefficient is negligibly small, even though 
it is of the same magnitude, {J-· • 10', as the earlier <u 
tOE.;;· 

First, during the triangularization process, we ob­
serve that the single large coefficient will not cause 
any other coefficient to become large. The large diag­
onal coefficient is never subtracted from anything. 
This is an important observation which will be ex­
ploited below. Meanwhile, we accept the fact that 
a~~, undergoes changes during the elimination of the 
preceding equations. It will slightly decrease in size 
and, as indicated, a local roundoff error<, of magni­
tude {J-· • I 0' must be taken into account. This is a 
slight improvement over the earlier situation; we 
must now deal with only one large local roundoff er­
ror instead of 10. Its global effect is 

(7 .14) 

The most substantial improvement comes from the 
fact that f,,, x, are extremely small. The change x, = 
/1gp0 of the precise distance will hardly surpass 3 mm. 
This compares with about 10 m of the coordinate 
shifts and accounts for an improvement of 10-'. The 
coefficients of the inverse f,, will be shown to be of 
magnitude II p = 10-•. This is very clear for k = g. 
The/,, is the variance of the adjusted distance be­
tween P and Q and this a posteriori variance is cer­
tainly not larger than the a priori variance 10-• of the 
measured distance. For k * e the argument is more 
complicated. Consider the 2 x 2 matrix 

TABLE 7 .2.-Coejjicients oft he normal contributions after 
transformation. 

row i i+ 1 p ~ 

i 0 0 0 0 
i+l 0 0 0 0 

p 0 0 p 0 
~ 0 0 0 0 

This is a 2 x 2 submatrix of the inverse referring to 
the two parameters k,g. Under the hypothetical 
assumption that these two parameters· are the last to 
be eliminated, the inverse of the 2 x 2 submatrix 
would be 

~
W'' 

a (k-1) ,, 
-f,~ 
f-d 

(7.15) 

This is the partially reduced normal equation matrix 
for x, and Agp0 after all other parameters have been 
eliminated. Hence apt;-' 1 is the reciprocal variance of 
the distance P-Q when coordinate k is held fixed. 
Because we do not expect fixing coordinate k to con­
tribute significantly to the accuracy of the adjusted 
distance P-Q, a;;-• 1 will be about 106• a~;-• 1 is the 
reciprocal variance of coordinate k when the distance 
P-Q is fixed. Fixing the distance will not prevent the 
net from floating in position; therefore, we expect 
the variance to be about 0.1. Hence ag-n is about 10. 
aJ;-• 1 I aJk-1 1 is the displacement of coordinate k when 
the distance P-Q is expanded by one unit from its ad­
justed length. We expect that this displacement is not 
larger than I. Hence a,~•-n = 10. The equation 

(7.16) 

shows that f,, must indeed be of the order 10-• 
Q.E.D. 

It follows that the global roundoff error due to<, 
is of magnitude {J-· • 10'. It is smaller than the global 
roundoff error caused by any other£,. The beneficial 
effect of our transformation becomes obvious. The 
procedure of transforming away weight singularities 
is readily generalized to more complicated situations. 
This will be demonstrated by two examples: 

(I) A linked chain of very precise distances. Sup­
pose that three distances P-Q, Q-R, R-S, have been 
measured with very small observation error. The 
other observations in the vicinity of station P, Q, R 
are of moderate accuracy. (See fig. 7 .3.) An appro­
priate set of substitute parameters would be: The two 
coordinates of Q, the polar coordinates of P,R with 
respect to Q, and the polar coordinates of S with 
respect toR. The transformed normal equation mat­
rix would have three large diagonal elements corre­
sponding to the three precise distances. There would 
be no large off-diagonal elements. Global roundoff 
errors would not be influenced heavily by the local 
errors at the large elements. 

(2) A cluster of stations with very accurate, and 
possibly redundant, mutual ties. Suppose that sta­
tions P, Q, R, S, Tare tied together by a set of meas­
urements of very high accuracy. The accurate meas­
urements may even be redundant among themselves, 
in the sense that four sides plus two diagonals in the 
quadrilateral P, Q, R, S, are of high accuracy. (See 
fig. 7 .4.) An appropriate way to transform away the 
weight singularities would be the following. Intro­
duce a local coordinate system with origin in R, and 
with local ~-axis (line R-P), local >J-coordinate of P 
(distance R-P), local ~.l)-Coordinates Q, S, T. In the 
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Figure? .3 . ...:-A chain of tightly connected stations. 

Figure 7 .4.-A nearly rigid substructure of tightly connected 
stations. 

vicinity of the five stations, the new normal equation 
matrix will have large elements at the intersection of 
rows and columns belonging to the local coordinates. 
There will also be large off-diagonal elements. This 
new feature is due to the redundancy among the very 
precise measurements. The inverse of the normal 
equation matrix will have very small elements in rows 
and in columns belonging to the local coordinates. 
This, together with the smallness of the increments to 
the local parameters, will effectively keep down any 
adverse global effect of the local roundoff errors at 
the large elements of the normals. 

Remark. It is really not too disturbing that redun­
dancies among strong ties between clustered stations 
also cause some off-diagonal elements of the nor­
mals, namely those coupling the local coordinates, to 
be large (even after transformation.) By an addition­
al effort, one could get rid of these large coefficients. 

The procedure would be to transform the submatrix 
of the normals (referring to the local coordinates) to 
a system of eigenvectors. (It would be sufficient to do 
this for the normals of the precise measurements 
only!) Such a transformation would replace the 
parameters llrj., IJ.~"' llrj", IJ.~s, llrJs, ~n llrjT by linear 
functions of these parameters. The parameters IJ.~0 , 
llrj0 , M0 , would be unaffected. The resulting normal 
equation matrix would have large diagonal elements 
at the locations of the new local parameters only. The 
analogy to the previous case would be complete. 
Such an additional spectral transformation does not 
offer an additional numerical advantage. Hence, 
even if local transformations would be used in prac­
tice, it is not necessary to avoid large off-diagonals 
under all circumstances. The crucial requirement is 
merely that any large local submatrix of the normal 
equation matrix A has a small inverse and small 
elements are included in all rows and columns of A-• 
that touch the submatrix. 

The outlined procedure to transform away weight 
singularities is theoretically straighforward and un­
sophisticated, but its practical application is cumber­
some because it does not lend itself easily to auto­
mated treatment. For a configuration of strongly tied 
stations, a careful human inspection and a choice of 
substitute parameters appears to be inevitable. Hence 
it is not anticipated that the procedure will be applied 
to the U.S. network. Why then have we gone to so 
much trouble to present it here? Because the possibil­
ity of transforming away weight singularities by local 
changes of parameters gives us important insight into 
the behavior of the large coefficients during triangu­
lar decomposition. Without this insight we could not 
be sure that the few large elements in the original nor­
mals would not multiply during the elimination pro­
cedure. 

Suppose that x = Vy is a parameter transforma-



Coefficients During Triangular Decomposition 87 

tion that removes the weight singularities for a set of 
strongly coupled parameters. V will be sparse. Rows 
and columns referring to parameters outside the set 
will have zeroes, except for the diagonal positions 
where there are I 's. The inverse W = v-• will have 
the same sparse structure. The relation between the 
original normal matrix A and the transformed one A 
is 

A= V'A V and · A = WTAW. (7.17) 

From our previous discussion we know that A!{,' will 
have large elements only at the intersections of rows 
and columns referring to strongly coupled parame­
ters. Our purpose is to show that the same holds for 
A!{{. Partition the above relation A = WT A Was 

(7.18) 

Assume first that all strongly coupled parameters are 
associated with rows and columns of A,. We then 
have W,. = I, W, = 0, W, = 0. Hence 

(7.19) 

Applying partial reduction we find 

A\f:l = Azz-AziAilA\2 = WizAzzWzz-

- W1zA21A11AlzWzz = / (7 .20) 

Wiz(Azz-AztAI.Al:z) Wzz = WfzAWW22. 

It follows that A!{,' and A!{,' are transformed into 
each other by the sparse matrix W,. which, being a 
submatrix of W, ensures that A'fi will have large ele­
ments at only the intersections of rows and columns 
of the strongly tied parameters. 

We still have to consider the case where not all 
strongly tied parameters are associated with A,.. This 
case can be reduced to the earlier one by the follow­
ing argument. View those stations whose strongly 
coupled parameters are associated with A,, as tempo­
rary or auxiliary stations, whose coordinates are of 
no interest after adjustment. Hence these coordinates 
can be eliminated immediately after forming the nor­
mal equations yielding a modified set of normals 
containing only parameters of interest. In these 

modified normals there will be strong ties between 
the remaining coordinates of the strongly coupled 
set. These ties are partly due to direct observations 
between the corresponding stations and partly to the 
eliminated stations. There will be no strong ties to 
other stations in the modified normals. Our previous 
argument can now be applied to the modified nor­
mals, proving also that in the general case A'f,' will 
have large elements only at the intersections of rows 
and columns of the strongly coupled stations. 

Remark: Although our argument applied only to 
A'fi, we infer easily that it carries over to the coeffi­
cients of (R,., R,J which comprise the already elimi­
nated equations. Eliminated equation i equals the top 
row of A~;" divided by the square root of the diago­
nal element! 

7.2 Expected Coordinate Shifts and Right-Hand 
Side Coefficients. 

According to section 3.4, the right-hand side coef­
ficients b!"' are best understood by considering the 
ratios b!"' Ia,'!''. Such a ratio is the shift of coordinate 
i with respect to its approximate positions while coor­
dinates k, p<k<!;n, k'M are fixed to their approximate 
positions, while coordinates k, 1 ~k~p, k=i are 
allowed to adjust freely. To estimate the right hand 
side coefficients during the various reduction states, 
we must rely on (a) estimates of the diagonals a,'!'', 
which are available from our previous discussion, 
and (b) estimated shifts of the stations with respect to 
their approximate positions, assuming that a certain 
subset of stations is fixed to their approximate posi­
tions. The coordinate shifts enter the roundoff esti­
mates not only indirectly via the right hand sides, but 
also directly through the global roundoff formulas. 
(See sec. 4.1.3.) It is now opportune for us to take a 
detour and survey all the information available on 
coordinate shifts, i.e., on the quality of the approxi­
mate coordinates. 

7 .2.1 Quality of approximate coordinates 

As usual, our entire discussion will be based on the 
assumption that coordinate shifts are scaled to the 
meter and that the normals are formed in agreement 
with this. The fact that shifts and normals actually 
are scaled differently, namely to arc seconds of 
latitude and longitude, will have only a marginal 
effect on the estimates to be considered later. 

Let us consider these factors: Factor no. ·J is the 
assertion by NOS that the approximate coordinates 
of stations which are connected by one of the high 
precision measurements will be in near agreement 
with the values of this precise measurement. If, for 
example, such a measurement is a distance between 

-----------------------------------------
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P, Q, the approximate coordinates of P, Q will match 
this distance in a way that the residual deviation is 
below two or three times the rms error of the precise 
distance. Shifts resulting from the subsequent adjust­
ment will therefore essentially amount to a common 
translation and rotation of the two stations P, Q. 

This consistency of approximate coordinates with 
high precision ties is extremely important. It implies 
that the right hand sides of equations belonging to 
strongly coupled stations will never become so large 
that they threaten the numerical validity of the results 
in the way the left-hand side coefficients do in such 
equations. Think of the original normals and let i, 
i+ 1, j, j+ 1 refer to stations P, Q. Then bJ a, is the 
shift that the latitude of P suffers when all other 
coordinates (including the longitude of P) are fixed 
to their approximate values. Since the approximate 
positions of P, Q match the precise distance, Q will 
not exert a strong pull onto P away from its approx­
imate position. Hence the shift b/ a, will be small, 
amounting to a few millimeters. On the other hand, 
a, being of magnitude 10', is large. Hence, b, is ex­
pected to be around 10'. A similar reasoning applies 
to b.-+ 1, bj, bj+t· The argument also extends to bfP>, 
b/·.N and so on, and for p > 0. 

Factor no. 2 is the predicted global shifts of the 
coordinates as taken from a most valuable study by 
Vincenty (1976). For cartographic purposes, Vincen­
ty predicted the change in map corners after the new 
adjustment. The change occurs for two reasons: (1) 
the choice of a new datum and (2) distortions in the 
old network. The choice of the new datum is not yet 
definite. It is clear, however, that it will be based on 
an ellipsoid which will be centered at the Earth's 
mass center as good as possible, 1nd fit well to the 
global geoid. The ellipsoid pararr eters will not be far 
from 

a= 6 378 135 m 1 = 11298.26. (7 .21) 

Vincenty's calculations were based on the ellipsoid 
that underlies the Naval Weapons Laboratory's 
(NWL) NWL!OF datum. This datum is one in a 
series developed at NWL by sophisticated filtering of 
Doppler data. Vincenty's procedure compared the 
three-dimensional coordinates of the Doppler sta­
tions as calculated from the old North American 
Datum of 1927 (NAD27) with those calculated from 
the NWL!OF datum. The map corners were inter­
polated from the shifts and afterwards were reduced 
to the NWL! OF datum. The mean value of the three­
dimensional coordinate shifts indicate a datum shift 
of about 

X=-10.0m Y=153.7m z=178.1m (7 .22) 

·This datum shift is not relevant to the roundoff study 
because approximate coordinates will be corrected 

for this datum shift. More relevant are the residual 
deviations of the individual station shifts from the 
mean shift (datum shift). These residual deviations 
indicate distortions within the network, and may also 
be partly attributed to Doppler noise. The residual 
shifts again reduced down to the NWL!OF ellipsoid, 
are roughly sketched in figures 7 .5a-b. Figure 7 .5a is 
a pictorial representation of the shifts of locations of 
odd latitude and longitude. Scale is provided by 
figure 7 .5b which shows the mean of latitude and 
longitude shifts, superimposed by a random disturb­
ance of 2 m. The distortions are below 5 m in most 
cases. Exceptionally large distortions, up to and ex­
ceeding 10m, are found in Maine and Montana. 

The distortions calculated by Vincenty provide a 
global picture of the anticipated coordinate changes. 
They will most strongly contribute to the prediction 
of the left-hand side global roundoff errors because 
they enter these formulas, directly. (See section 
4.1.3.) But will they also give us indications of the 
size of the right·hand sides? Hardly! A right-hand 
side coefficient b, of the original normals reflects 
only the relative shift of coordinate i with respect to 
the neighboring stations fixed to their approximate 
position, and also with respect to the second coordi­
nate of the station to which coordinate i belongs. The 
relative accuracy of the approximate coordinates of 
neighboring stations is expected to be much higher 
than 5 m (the amount of the smooth global distor­
tions). Hence, in estimating the right-hand sides of 
the original normals we must rely on estimates of the 
local inconsistencies between the approximate station 
positions. 

We may also rely on factor no. 3 which consists of 
the computer outprints of local adjustments. Coor­
dinate shifts and right-hand sides of such adjust­
ments give us "snapshots" of some of the local situa­
tions in the U.S. network. 

7 .2.2 History of right-hand side coefficients 

Because of the previously mentioned consistency 
of approximate coordinates and high precision 
measurements, it is not necessary, as it was for left 
side coefficients, to distinguish between stations in­
volving such high precision measurements and be­
tween other stations. For the original normal equa­
tions of a lowest level block we take the right sides of 
sample calculations as representative. They are of the 
order of magnitude of 1 0' to 1 0'. How will these right 
sides change as elimination proceeds according to the 
Helmert blocking scheme? Not much, as we shall see. 

Consider first a station interior to a lowest level 
block. It is likely that such a station is still tied to 
some fixed (i.e., not yet eliminated) neighboring sta­
tions at the moment when it is next in turn for piv-
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Figure 7 .Sa.-Pictorial representation of coordinate shifts. 
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oting. Here, as in section 7 .1.1, we temporarily use 
the idea that Cholesky's algorithm is executed in the 
fashion of successively eliminating equations. (See 
the remarks at the end of section 3.2.) We study the 
changes of W' for fixed i, and p varying from 0 to 
i-1. As long as a station is tied to fixed, i.e., 
uneliminated stations, we can expect that the hi'' will 
reflect mainly the discrepancies between the observa­
tions to the neighboring stations and the approximate 
positions. This means that hi'' will not differ dramat­
ically from b,'o' = h, in the original normals. Stations 
that are farther away are not likely to transmit a 
strong influence through the maze of the eliminated 
stations. In those exceptional cases where a station 
stands like an island in a sea of eliminated stations 
(with junction stations on its shore line), we do not 
expect either that the behavior of the right sides will 
be significantly different. It is true that for such a sta­
tion we expect a somewhat larger shift when it is 
finally freed. But the fixed junction stations will pre­
vent a shift at the global scale of some 5 m. The shift 
may be perhaps l to 2 m. The variance of the station 
coordinates may be of the order 10-•. Hence air' = 
10'. This gives us hi" = air' x, = 10' • 2 = 20 which 
is well within the assumed range of the bio'. 

Our argument can be extended to stations that are 
eliminated at a medium level. Ties to neighboring sta­
tions are always likely. But, also, the right-hand side 
of the very last coordinate to be eliminated will not 
deviate too much. The diagonal element is the recip­
rocal variance of this coordinate when it comes out 
of the adjustment, hence aJ:-" = 10'. The shift of the 
coordinate with respect to the approximate position 
can be up to l 0 m. This gives a hJ"-'' that is of magni­
tude 10'. 

Until now we have been concerned exclusively with 
the coefficients hi'', i.e., with the right-hand sides of 
equations whose time has not yet come to be elimi­
nated. The coefficients s, of the eliminated equations 
differ from h,<'-" by division through the square root 
r, of the diagonal element a,\'-•'. Because the diago­
nal elements differ greatly in size, so can s,. From all 
we have said, there is no reason to fear that s, will 
become unduly large. Possibly only a certain s, may 
become very small because of a large r,. We must 
then deal with a station that is tied strongly to an­
other station which comes later in the elimination se­
quence. The smalls, reflects the fact that coordinate i 
moves slightly when the neighboring stations are held 
fixed. 

8. SAFE BOUNDS ON GLOBAL ROUNDOFF 
ERRORS 

In sections 4.1.4 and 4.2.3 we specified preliminary 
bounds on the global roundoff errors in the U.S. net-

work. Details that were anticipated in these earlier 
sections concerning bounds on elements of A, A ~·i, F 
= A-\ b, b1P 1, x as well as on the numbers of elemen­
tary operations have been filled in. It is remarkable 
that the preliminary bounds indicate feasibility of the 
adjustment with only one exception. This is the glo­
bal bias E{~} caused by left-side triangularization 
roundoff errors on an IBM 360 computer. In this 
chapter we will be mainly concerned about remedy­
ing this situation. Insight gained through the discus­
sions in chapter 7 will be beneficial. We will also 
reconsider the other bounds and improve them. 

8.1 Roundoff Error Propagation When Weight 
Singularities Are Transformed Away 

We assume hypothetically that all weight singulari­
ties of the U.S. network are transformed away by the 
method given in section 7 .1.4. Because the transfor­
mations are not actually carried out, we can even 
indulge in the luxury of assuming that for clusters 
containing more than two tightly connected stations, 
spectral parameters have been introduced, as dis­
cussed in the remarks of 7 .1.4. We further apply a 
scale transformation to the local parameters of high 
accuracy such that their variances become compara­
ble in size to the variances of the ordinary coordinate 
shifts. The changes to these local parameters then 
will no longer be measured in meters, but rather in 
units close to a decimeter. This results in larger 
numerical values for the local parameter changes. 
Transforming the normal equations in this way will 
result in a system in which no element a.-1 of the left 
side will be larger than about 10'. The units of a 
diagonal a, are still m-' if i refers to a global coordi­
nate. For i referring to a local parameter, different 
units are in effect, but it is not necessary in the sequel 
to make constantly explicit reference to these differ­
ent units. A magnitude of 10' m-' for a, corresponds 
to a "neighborhood accuracy" of the remaining glo­
bal stations, which is in the centimeter range. The in­
verse F of the normal equation matrix A will only be 
slightly affected by the transformations. We may re­
tain our earlier assumptions on the size of the ele­
mentsf,1. 

8.1.1 Estimating the bias E{~} 

Concentrating on the left-side roundoff errors dur­
ing triangular decomposition, our starting point will 
be eq. (4.34), with the right-side contribution omit­
ted. This is 

~ = -f rx,£ -f f ([,.1x, + ~.x,.J£.1,. (8.1) I _i:l JiJ • JJ }:1 Jc:=j+l Ji 
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Replacing~" <1, byE{(,}, E{E;,}, taking absolute val­
ues and counting the contribution of the diagonal 
terms E..ii twice, we arrive at: 

1£{~,}1 "'J, /,
1 

{[f;JI lx.l + [I;, I lx,I}IE{<,,}I. (8.2) 

This can be rearranged to yield: 

" " i 
IE{~,}I "'J, [1;,1 !,~, lx,l IE{<,.}I +~, lx.l IE{<,;}I}. (8.3) 

Recall from section 4.1.1 that'" is the sum of 2,...,. + I = 2J,Ap. elementary roundoff errors E.jk0 . Here the 
symbol E.}Z 1

' stands for E.}:/, E.}tl, E.jk', E.)t', and Jl.ih is the 
number of nonzero product terms needed to reduce 
a,. (f.11• = 0 if a1, is a zero location). We will work 
with a single bound on E{<)Z"} which is obtained in 
the following manner: 

Because weight singularities have been removed, 
no left-side coefficient a;; wiii be larger in absolute 
value than I 0'. In agreement with proposition 4.1, 
see also eq. ( 4.49), we need an integer power c of the 
base {3 = 16 that wiii bound alllaul· To specify this 
bound properly, we must temporarily switch to a set 
of normals scaled in agreement with coordinate shifts 
measured in arc seconds. A maximum element II all = 
I o•m-' corresponds to a maximum of I 0' • 
IRn/(180•3600)'1 = 10' • 30.9' arc sec-'. This gives 
about 9.6• 10' arc sec-'. The smallest power of 16 
bounding this is 16' = 1.7•10'. Scaling this back­
wards to meters, we arrive at 1.7•10'/30.9' = 1.8 
•10'. Hence our scaling value is now c = 1.8• 10'. 
Multiplying by 2V/f = 8, we get c = 14•10'. With this 
we bound the nonzero biases as 

IE{<W'll <;; ~ 16-" on the IBM 360. (8.4) 

We immediately lower this bound by the following 
arguments: To obtain c, multiplication of c by 8 is 
necessary only because of elementary operations in­
volving the square root of the diagonal elements (r,1 

= "1/{i;;). Because diagonals are counted twice, we 
may lower the factor from 8 to 4. In the present con­
text, it can even be lowered to I. The factor is indeed 
1, if E.J:I) refers to an elementary roundoff error r.j;J, 
EX,' occurring during the evaluation and summ_ation 
of the product terms apa.,. Only the above mentioned 
square roots and the division that establishes r,. = 
0.;hl ai.i still necessitate a factor of 4. However, ab9ut a 

· I ,000 times more operations are involved in the 
product sum accumulations than there are square 
roots and divisions. Because we are presently work­
ing with a uniform bound on all roundoff errors, we 
may indeed lower the factor to I. Hence in this sub­
section we use 

IE{<if''}l <;; ; 16-" = 10'•16-" on the IBM 360. (8.5) 

After these preparations we can derive from (8.3) the 
following estimate: 

(8.6) 

Using a single bound llxll on lx,l, we can also use the 
following inequality: 

(8.7) 

We will use both eqs. (8.6) and (8.7) in the sequel. 
Using first (8.7), which is simpler, we proceed by ap­
proximating the sum and by assuming constant val­
ues/;; as long as any of the subscripts refers to a cer­
tain 2° x 2° quad. Stated more precisely: Let all 
2° X 2° quads be labelled by Greek indices QoX· All 
coefficients/;1 will have the same value!,, as long as i 
is a coordinate out of a certain 2° x 2° quad Q, and) 
is a coordinate out of a different 2° x 2° quad Q,. 
Also, ~' is replaced by the piecewise constant function 
~,. The replacement of /;1 by!,, is justifiable for only 
the global part fif'"'"" of the covariance. The global 
part goes over into!,~'"'"". If e = x. or if quad Q, is a 
neighbor to Q, a local part (peak) of/", denoted by 
J:V"<"", must be taken into account. This is done by 
means of a correction to the result obtained from 

.r,:global). 

In addition, global roundoff errors ~~ will be 
replaced by~" as mentioned above. From (8.7) we 
get: 

IE{~,}I.;; 10' • 16-" • llxll • ~ /,'f'"'"'' {ry> + r:<'} 

+ peak contribution from/;Y"<""· (8.8) 

The quantities fj' 1, rj< 1 are precisely the 2° X 2° quad­
based individual r row and column counts (see chap­
ter6, especially figs. 6.15a-b): 

(8.9) 

Assuming llxll = 10, we evaluate (8.8) for certain 
2° x 2° quads. Table 8.1 gives the results. The quads e 
are identified by latitude and longitude of their mid­
point. The quads were selected as being representa­
tive for certain regions of the U.S. network. From 
some of these quads maximum error contributions 
can be expected. 
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TABLE 8.1.-Bounds from eq. (8.8) on the bias Egl'} during first 
iteration, for the net with weight singularities removed, using an 

IBM-type computer 

QuadQ Type of contribution Bound on 

~ A 
Global Local £{<,} 

m m m 

39 77 0.00186 0.00040 0.00226 
47 69 0.00245 0.00009 0.00254 
47 121 0.00185 0.00044 0.00230 
41 97 0.00144 0.00036 0.00180 
35 Ill 0.00144 0.00021 0.00165 

The local peak contribution is based on formula 
(5.43) given in section 5.6, where it was assumed that 
we were dealing with two local peaks of the type 

p(d) = 1~4 log I :3d . (8.10) 

d. 

If our quad Q, shows a r count of r,. we must as­
sume a worst case, namely, that all roundings occur 
along a linear set of stations. Such a linear set of sta­
tions refers to a major block boundary; as we have 
seen, the majority of roundoff errors arises in con­
nection with block boundaries. The minimum width 
of a 2°X zo block is about 180 km. Hence a cautious 
way in which to bound the local peak contribution 
from(8.10) is 

r '· 10' • 16-" llxll-' 2 J p(x) dx = 
180 • 

10' • I6-" llxll p. • 0.78 1~·0 r,. (8.11) 

If d. > 180, one should replace r, by the largest r 
count of Q, or of any adjacent quad. 

Because shifts are not 10 m at every point, we can 
improve these estimates somewhat by using (8.6). 
With similar reasoning, we arrive at the following 
formula: 

IE{~,}I "10'. 16-" L /,':''''" {=:y• + :::::·•}. 
' 

+ peak contribution fromfl./oc-.n (8.12) 

The quantities :=:y>, :=:~"> are "shift weighted"r 
counts, defined as follows: 

:=:crJ = L f llxll 2 ' M, ••J w(k) JlJ• 
(8.13). 

j 

=::·• = 1~, ,?;, llxll."' 2J1•.1· 

Here w(k) refers to the 2°X 2° quad Q. in which coor­
dinate k is located. llxll. is a bound on the shift in 
quad Q •. Because the shifts are not equal in latitude 

and longitude, a bound on the average shift is used. 
Recall the shifts in the zox 2° quads shown in figures 
7 .Sa-b. To account for local variations of the coordi­
nate shifts, any bound llxll. on the average is replaced 
by V llxll~ + 2'. This means that 2-m local shifts are 
randomly superimposed. Figure 7 .5b shows the val­
ues ofV llx.ll'+ 2' for the various quads. 

A moderate modification of the computer pro­
grams used to evaluate r:·•. r:·· yielded the shift­
weighted r-counts :=:y>, :=:~" 1 , which we call 
":=:-counts." The superposition :=:y> + :=:!"> is shown 
in figure 8.1. Table 8.2 lists the bounds on£{~,} re­
sulting from this procedure. 

TABLE 8.2.-Boundsfrom eq. (8.12) on the bias E{~p} fora 
network with weight singularities removed, using an IBM-type 

computer 

QuadQ Type of contribution Bound on 

~ A 
Global Local E{c,l 

m m m 

39 77 0.00067 0.00016 0.00083 
47 69 0.00098 0.00004 0.00102 
47 121 0.00063 0.00016 0.00079 
41 97 0.00050 0.00012 0.00062 
35 Ill 0.00049 0.00007 0.00056 

8.1.2 Estimating the standard deviation o{~;} 

Beginning with eq. (8.1) and taking variances, we 
obtain 

(8.14) 

Using the inequality (a+ b)'" 2(a' + b'), we see that 

o'g;} "2 J, ~1 {/d xl + fl .xf} o'{<,.}. (8.15) 

Imagining £1, as a superposition of elementary 
roundoff errors <)Z" and bounding o{<J:''} by 

o{<'Z''} "_c_f3-• 
' \112 

whereby c = 2 Vii c, c = 1.8 • 10', we find that c = 
5 • 10' for the CDC 6600 and c = 14 • 10' for the 
IBM 360. It follows that 

{ ''''}.: 1.5 •10' •2-4' ... CDC6600 
0 

'
1
' ~ 4.2 • 10' •16-" ... IBM 360 

(8.16) 

By applying similar reasoning to that in section 8.1.1, 
we obtain the counterpart of (8.8): 
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56 
666 

48 46 44 42 36 34 32 36 28 26 24 

14E8 62E7 33E8 
668 

45E8 12E8 23E8 7~E7 14E7 
676 

42E8 SSES 40E8 17ES 12ES 

3~E8 22E8 38E8 21ES 
674 

11 EB 26E8 23E8 17ES 74E8 29E8 15E7 

32E8 53E6 74E7 49E8 18ES 14ES 46E8 58E6 
676 

28E8 68E8 12ES 11ES 15ES 17ES 96E8 

33E8 l3E5 23E8 l~E8 16E8 21lE8 7~E8 l~EB 11 E8 14E7 lllE5 

21E8 4~E6 25E7 l~E8 31E8 15E8 24E8 18E8 56E8 14E8 54E7 29E7 
684 

55E8 41E7 51lE7 43E7 28E8 llE8 l~EB 55E7 59E8 llE8 27E7 
686 

21E8 14E8 35EB 34E8 88E8 6~E8 81lE8 47E8 53E8 28E8 
688 

17E8 20E7 96E7 87E7 27E8 83E7 13E8 llE8 58E8 16EB 11E8 

27E8 34E7 93E7 7SE7 21lE8 83E7 18E8 15EB 75EB 2~EB 19E8 
692 

40E8 51E7 illEB 28E7 13E8 68E7 13EB 72E7 55E8 SSE7 82E7 
D94 

96E8 12ES 13ES 11ES 12ES 13ES 15ES 11ES 14ES 91E8 77E8 
696 

67E8 35E7 71E7 33E7 3~E8 66E7 12E8 87E7 49E8 96E7 92E7 43E7 12E8 
098 

62E8 42E7 64E7 4~E7 26E8 98E7 SlE? BlE? 25E8 8~E7 97E7 27E7 87E7 

75E8 44E7 63E7 21E7 18E8 24E7 57E7 33E7 18E8 15E7 17E7 1~E8 
162 

73E8 87E7 15E8 86E7 28E8 98E7 16EB 1~EB 19E8 5SE7 21E7 12E8 
164 

3lE8 26E6 25E7 llE7 15E8 57E6 S~E? 21lE7 21E8 92E6 lllE5 94E7 
166 

35E8 42E7 45E7 llE7 l2E8 27E7 95E7 88E7 28E8 2~E7 l6E8 
168 

31E8 l8E7 24E7 47E6 93E7 36E6 28E7 S5E6 2lE8 l7E6 l4E8 
11 6 

64E8 4lE8 33E8 42E8 7~E8 41E8 46EB 57E8 7BE8 l5E8 24E8 
112 

51lE8 lllE7 48E7 l7E7 12E8 5lE6 55E7 39E7 24EB l6E5 18E8 
114 

52E8 55E7 BilE? 28E7 l7E8 35E7 l~E8 12E8 34E8 34E8 
11 6 

61E8 6~E7 76E7 l5E7 l2E8 l6E7 94E7 llE8 4lE8 l3E8 
118 

76E8 35E8 24E8 62E7 l9E8 18E8 23E8 33E8 29E8 
126 

4lE8 llE8 24E8 3lE7 2tE8 llEB 21lE8 48E7 25E5 
122 

l8E9 llES 49E8 6~E7 23EB l6E8 l9E8 
124 

32E8 3lE7 3lE7 28E7 tilES 34E4 
126 

FigureS. I.-::: counts for 2° x 2° quads. 

--------------------------------------------------------
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+ peak contribution fromfNocaiJ. (8.17) 

The peak contribution must be superimposed in the 
most pessimistic way. By reasoning similar to the 
transition from (8.14) to (8.15), we conclude that the 
superposition is bounded by V'I times the mean 
square superposition of the global and local parts. 

The counterpart of (8.12) is obtained as 

ag,) ,_; . :,., V2 
v 12 

+ peak contribution fromf.Y"'"". (8.18) 

Here we have introduced the "squared shift-weight­
ed'' r counts: 

(8.19) 
' j 

:::\'' = L ~ Jlxll~"'2"''"' j£QT k-1 

The results of calculations based on formulas (8.17) 
are shown in table 8.3. Because the errors are quite 
small, formula (8.18) was not used. 

The local contribution of a peak (8.10) to a{~,) was 
evaluated from 

r '· -' 2 f p'(x) dx [3-• = 
180 • 

8.2 Contribution of the Weight Singularities 

As we argued at length in chapter 7, the weight sin­
gularities will cause large coefficients to be superim­
posed on the left-hand sides of the normal equations. 
These coefficients can go up to 5•10'. They are re­
stricted to the intersections of rows and columns of 

stations which form strongly connected clusters. 
There will be no coupling between different clusters. 
As elimination proceeds, no additional large coeffi­
cients will arise at other locations. Large coefficients 
may or may not drop to moderate size before their 
equation is eliminated. 

To my knowledge, the number of stations involved 
in high precision measurements does not exceed 25 
percent of the total number, which is below 200,000. 
Hence we expect to have fewer than 100,000 equa­
tions in which such large coefficients occur. The 
number of clusters, or the average number of stations 
per cluster is not known. Because the number of large 
coefficients increases if there are fewer but larger 
clusters, I assume there are about 10,000 clusters, 
each having 5 stations. This is a conservative figure, 
because many clusters involve only two stations. The 
number of large coefficients then would be around 
10,000. (10•9/2) = 450,000. 

As argued in chapter 7, there will be many elemen­
tary operations involving a large coefficient which 
will not cause a large local roundoff error. Hence it is 
extremely pessimistic to assume that every elemen­
tary operation causes a roundoff error with magni­
tude of 5•10' • [3-•. Further we assume that no provi­
sions have been made to get rid of the strongly 
coupled stations at the lowest block level. Hence the 
distribution of "singular" stations among the vari­
ous block levels may be the ·same as the distribution 
among the whole population of stations. At a diago­
nal coefficient there will be 2;<;; + I elementary 
roundoff errors. The number of roundoff errors at 
an off-diagonal location (i,j) is 2;<u + I, which, in 
view of flu <.; fl;;, is smaller than the number of errors 
in the corresponding location (i, i). Hence it is conser­
vative to use the number 2;<;; + I also for the off­
diagonals. Tightly connected stations will be situated 
close together. Therefore, the shift values x,, x1 for 
two such stations i,j are assumed to be identical. 

Summarizing, we pretend that for 25 percent of the 
equations 2 • 2.5 • (2 flu + I) bad roundings will oc­
cur close to the diagonal position; therefore, we can 
put/;1 xk = };k x, = .f, x1. 

TABLE 8.3.-Bounds from eq. (8.17) on o{~ ... } during first iteration and for network with weight singularities 
removed. 

Quade Type of contribution Bound on oR,} 
global local 

+ I. CDC6600 IBM360 CDC6600 IBM360 CDC6600 IBM360 

39 77 2.8E-6 3.0E-8 2.1E-6 2.3E-8 4.9E-6 5.4E-8 
47 69 4.9E-6 5.3E-8 9.8E-7 l.IE-8 7.1E-6 7.6E-8 
47 121 2.8E-6 3.0E-8 2.2E-6 2.4E-8 4.9E-6 5.4E-8 
41 97 2.0E-6 2.2E-8 1.9E-6 2.1E-8 4.0E-6 4.2E-8 
35 Ill 2.0E-6 2.2E-8 l.SE-6 1.6E-8 3.5E-6 4.0E-8 
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8.2.1 Estimating the bias ER,) 
Starting with eq. (8.2) and using the simplification 

just discussed, we arrive at the following estimate for 
the bias contribution resulting from the large coeffi­
cients: 

IEK)I<;;0.25 •2 •2.5 • 1~, 2!f1!!xA !E{<;;)!. (8.21) 

As a bound for the elementary roundoff errors, we 
can use (8.5) with c replaced by 16'/30.9' = 5•10'. 
Because Ejj is composed of 2J.I.ii + l = 21JH elementary 
roundoff errors, we get 

IE{~.}I.; 0.25. 2. 2.5. 5. 10'. ; • 16-". 

• f. 21/. llxi2J1· = j:t 1.1 'J :J.I 

1.25 • 10' • 16-" • J, !J,,!Ix,!f.<11 • (8.22) 

Applying the same procedure as in section 8.1.1, we 
get 

IE{~,)!<; 1.25 • 10' • 16-" • L l.t;~'"'"'"lllxll, n, 
' 

+ peak contribution due tofY""'". (8.23) 

We see that this time the n-counts n, for the various 
quads Q, come in. Using a uniform bound llxll .on 
llxll, we get 

IE{~,}I.; 1.25 • 10' • 16-" •llxll • L lf~:'"'""l n, 
' 

+ peak contribution due to fY"'"' 1• (8.24) 

The estimates resulting from (8.24) are shown in 
table 8.4. The table also shows earlier bounds (from 
table 8.1) that are applied to the network with weight 
singularities removed. The last column shows the 
total bounds obtained by superposition. 

TABLE 8.4.-Bounds from eq. (8.24) for contribution of weight singularities toward ERP} during the 
first iteration 

QuadQ Type of contribution 

~ A Global Local 

39 77 0.00138 0.00048 
47 69 .00198 .00010 
47 121 .00130 .00039 
41 97 .00100 .00012 
35 111 .00100 .00009 

Based on eq. (8.23), slightly improved estimates are 
calculated, as shown in table 8.5. The table also 
shows earlier bounds (from table 8.2) that are applied 

Bound on Earlier Total 
Eg,} from bound from bound on 
eq. (8.24) table 8.1 Eg,} 

0.00185 0.00226 0.00411 
.00208 .00254 0.00462 
.00169 .00230 0.00399 
.00112 .00180 0.00292 
.00109 .00165 0.00274 

to the network with weight singularities removed. 
The last column shows the total bounds obtained by 
superposition. 

TABLE 8.5.-Bounds from eq. (8.23) for contribution of weight singularities toward E{ep} during the 
first iteration 

QuadQ Type of contribution 

~ A Global Local 

39 77 0.00052 0.00019 
47 69 .00090 .00006 
47 121 .00044 .00012 
41 97 .00035 .00005 
35 111 .00034 .00004 

8.2.2 E~timating the standard deviation o{t} 

Just as (8.21) is the counterpart of (8.2), the 
following equation is the counterpart of (8.15): 

a'R,J <;;0.25 •2 •2.5 •2J, 2f,Jxfa'{<1;). (8.25) 

Bound on Earlier Total 
Eg,} from bound from bound on 
eq. (8.23) table8.2 Eg,} 

0.00071 0.00083 0.00154 
.00096 .00102 0.00198 
.00057 .00079 0.00136 
.00040 .00062 0.00102 
.00038 .00056 0.00094 

By reasoning as described previously, we arrive at: 

o!~,l.; m • 2.23 • fJ-· llxll V ~ W:'"'""l' n, 

+ peak contribution due to fY"'"". (8.26) 
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The values of care cautiously taken to be 2V7f • c, c 
= 5•10'. We get c = 14•10' for the CDC 6600 and 
4•10' for the IBM 360. This leads to tables 8.6 and 
8.7, which contain estimates for the standard devia­
tion component resulting from weight singularities. 

The tables also show earlier bounds (from table 8.3) 
that apply to the network with weight singularities 
removed. The last column of each table shows the 
total bounds obtained by superposition according to 
the rule explained in the text following eq. (8.17). 

TABLE 8.6.-Bounds of the CDC 6600 computer derived from eq. (8.26) showing the contribution of weight 
singularities toward o{~} during the first iteration 

Quade Type of contribution Bound on Earlier Total 
o{~P} from bound from bound on 

4> A Global Local eq. (8.26) table8.3 oR,} 
39 77 3.lE-5 2.8E-5 5.9E-5 4.9E-6 8.4E-5 
47 69 5.6E-5 1.3E-5 8.2E-5 7.IE-6 l.2E-4 
47 121 2.9E-5 2.5E-5 5.4E-5 4.9E-6 7.6E-5 
41 '97 2.0E-5 l.4E-5 3.5E-5 4.0E-6 5.0E-5 
35 Ill 2.lE-5 l.2E-5 3.4E-5 3.5E 6 4.8E-5 

TABLE 8.1.-Bounds on the IB_M 360.~omputer derived from eq. (8.26) showing the contribution of weight 
smgulanttes toward oRo} during the first iteration 

Quade Type of contribution 

4> A Global Local 

39 77 3.5E-7 3.lE-7 
47 69 6.3E-7 l.SE-7 
47 121 3.3E-7 2.8E-7 
41 97 2.3E-7 l.6E-7 
35 Ill 2.4E 7 1.3E-7 

8.3 Residual Bias on the CDC 6600 

The roundoff estimates determined for the CDC 
6600 were quite small. It was estimated that the first 
adjustment run, where some coordinate shifts were 
expected to exceed 10 m, will yield a solution vector 
with an error of about 0.0001 m. This implies that 
any further iteration will give about five correct digits 
of the largest coordinate shift. Nevertheless some 
words of caution are appropriate: 

Remember that the CDC 6600 estimates rely on 
two idealized assumptions. 

(I) It was assumed that the elementary roundoff 
errors are completely unbiased. This is not entirely 
true. The CDC is not a truly rounding machine in the 
mathematically strict sense. But even on a truly 
rounding machine, an elementary roundoff error 
may be biased on some rare occasions, namely when 
the two operands are of very different magnitude. 
(Refer to the discussion in sec. 2.8.1.) 

(2) The propagation of local roundoff errors to 
the global ones was done according to a linear model. 
For example, it was assumed that, if Ax = b, then~ 
= -A-'txisthesolutionof(A+t)(x+~) =b. How­
ever, this is only true to the first degree of approxi­
mation. The neglected higher order terms could cause 
some small bias of~-

Bound on Earlier Total 
o{,9 } from bound from bound on 
eq. (8.26) table8.3 oR,} 
6.6E-7 5.4E-8 9.4E-7 
9.lE-7 7.6E-8 l.JE-6 
6.1E-7 5.4E-8 8.6E-7 
4.0E-7 4.2E-8 5.6E-7 
3.8E-7 4.0E-8 5.4E-7 

Let us assume hypothetically that the standard in­
struction set is used on the CDC 6600. Then chop­
ping occurs instead of (nearly) true rounding, and a 
bias-analysis, similar to the one done for the IBM 
360, could be performed. It would result in global 
roundoff error estimates approaching 0.5m. Hence 
only one correct significant digit of the largest coor­
dinate shift can be guaranteed from the linear model. 
Nonlinearity effects then can no longer be neglected 
and the results may possibly be entir~ly useless. Al­
though we believe that our estimation procedure de­
tailed in section 8.1 and 8.2, overshoots the e;rors 
somewhat, I do not recommend doing the adjust­
ment on the" chopping" CDC 6600. 

Fortunately, any residual bias encountered on the 
"truly rounding" CDC 6600 will be much small­
er. I am not able to state precisely how much smaller 
it will be. From test calculations, which will be 
documented in chapter 10, I conclude that the resid­
ual bias will be smaller by at least three powers of 10. 
Hence at least four correct digits of the largest coor­
dinate shift will be recovered correctly. 

Let us summarize by stating that the CDC 6600 is a 
safe machine on which to do the adjustment, al­
though one cannot entirely exclude the fact that the 
estimates in the previous section are too optimistic by 
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a power of 10. Even if this were not the case, for 
larger and larger networks one must be aware that 
the residual bias effects will eventually outgrow the 
effect of the standard deviations of the elementary 
roundoff errors. 

8.4 U.S. Network Without Doppler Stations 

If we discard the 130 Doppler stations and fix the 
absolute position by constraining one station, 
MEADE'S RANCH, to a fixed position, we are deal­
ing with a different problem and the roundoff esti­
mates must be revised. The coefficient matrix A 
changes and so does the inverse F, the right- hand side 
vector b and the solution vector x. It turns out that 
our rather crude estimates of the magnitude. of the 
coefficients of A, b, x can be retained. Only F has to 
be reevaluated because the elastic properties of a net­
work that has a single fixed point are quite different 
from those of'! network with many absolute position 
observations. · 

We therefore reevaluate the global part ofF,· a pic­
torial representation of the two columns referring to 
the base quad + = 39°, ). = 77° is given in figures 
8.2a-b. These figures must be compared with figures 
5 .lOb-c. As for the local part ofF, we can retain the 
expression implied by eq. (5.43). However it is im­
portant that the local peaks be applied twice, once at 
the base quad (as before) and again at the fixed sta­
tion, MEADE'S RANCH. From the peak at 
MEADE'S RANCH we omit the first part which ac­
counts for ill-determine4 stations. The local peak at 
MEADE'S RANCH will cause some distortions 
there. Otherwise, it will result in two constants, one 
for each coordinate direction, which have to be 
added to the covariances throughout the remainder 
of the network. Note that figures 8.2a-b do not show 
the distortions caused by the local peaks. However, 
the common shifts caused by the additive constants 
are shown because we decided to consider them part 
of the global features of the inverse F. 

Based on this modified inverse, the calculations in 
sections 8.1 and 8.2 have been repeated, but only for 
one base quad, + = 39°, ). = 77°. The results are 
shown in tables 8.8, 8.9, and 8.10. Compared to the 

TABLE 8.8.-/BM 360 bias estimates for base quad f = 39°, .\ = 
77°, relying on eq. (8.8) which uses r counts. 

global 0.0079 
Without weight singularities local .0004 

:!: .0083 
global .0057 

Weight singularity contribution local .0005 

:!: .0062 
Total bias .0144 

estimates for the Doppler-equipped network, we see 
that about one power of 10 is lost for the bias as well 
as for the standard deviation. 

TABLE 8.9.-IBM 360 bias estimates for base quad+ = 3!?, ). = 
7'?, relying on eq. (8.12) which uses~ counts. 

global 0.0028 
Without weight singularities local .0002 

:!: .0030 
global .0021 

Weight singularity contribution local .0002 

:!: .0023 
Total bias .0053 

TABLE 8.10.-Standard deviation estimates for base quad+ = 3~. 
A ~ 77". 

CDC6600 IBM360 
global l.IE-5 1.2E-7 

Without weight singularities local 2.1E-6 2.3E-8 
rmsmean 1.6E-5 1.7E-7 

global 1.2E-4 1.3E-6 
Weight singularity contribution local 2.8E-5 3.1E-7 

rmsmean 1.7E-4 !.8E-6 
Total standard deviation 2.4E-4 2.8E-6 

9. ATTEMPTS TO LOWER THE ESTIMATES 

Having established safe bounds for roundoff error 
accumulation during the solution of the normal 
equations of the U.S. network by using a computer 
similar to the CDC 6600 or the IBM 360 we feel free 
to speculate on how much we may have overesti­
mated the errors. In this chapter we will take a 
different and less rigorous approach, one which will 
rely on insight, judgment, plausibility considera­
tions, and educated guesses. No 100 percent warranty 
for these estimates will be given. 

9.1 Review of Causes for Overestimation 
In earlier chapters we repeatedly pointed out the 

causes for overestimating roundoff errors. Let us 
briefly review them: 

Overestimating starts early, namely at the esti­
mates for bias and standard deviation of the elemen­
tary roundoff errors. (Refer to the discussion in sec­
tion 2.8.1.1 and 2.8.1.2.) Overestimation of elemen­
tary roundoff errors was not considered too serious, 
and we will not try to improve things on the elemen­
tary level. 

Overestimation took place when the local roundoff 
errors '" were analyzed. These are the left-side local 
roundoff errors of the triangular decomposition 
phase. The <;;'s affect the coefficients a0 by means of 
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Figure 8.2a.-Covariance for net without Doppler observations. Response of network to latitude disturbance at cp = 39°, A.= 77°. 
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backward analysis. There are three main reasons for 
overestimating the e,1• 

(I) We allowed for one elementary error e!N for 
the calculation of a product term '"'" and another 
error, e!N, for adding the product term to a previous­
ly accumulated sum. In many cases, in particular 
when a station is not involved in a weight singularity, 
the accumulated sum will dominate the product term 
in absolute size. e!N will then be dominated by e!11' 
and therefore may be neglected. This means that our 
estimates are too large by a factor of about 2, as far 
as the bias E{~,} is concerned, and by a factor of 
about V2, as far as the standard deviation oR,} is 
concerned. 

(2) Means and standard deviations of thee;/ s have 
been grossly overestimated in many cases. B{e;;}, a{e,;} 
depend on the a,1 = a!;' and the history of the a!)"s 
asp proceeds from 0 to i-1. We have overestimated 
the size of the al)"s particularly for most of the cases 
where i,j refer to coordinates of stations located at an 
appreciable distance. The reader is referred to section 
8.1, where we tried to bound the bias for the case of 
removed weight singularities. A single constant c was 
used to bound the smallest power of the base fJ, 
which power in (\lrn bounds Hall, the largest element 
of the normal equation matrix A. Hence all elements 
of A are essentially bounded by a single constant. 
Means and standard deviations of all elementary 
roundoff errors E.JN, £1/i}, r.Jjk1 were bounded in terms 
of c. To anyone who has insight into the elastic prop­
erties of a geodetic network this must appear as a 
waste of magnitudes. We shall try. to convey such in­
sight in subsequent sections. 

(3) There is a third reason for overestimating the 
local roundoff errors '"· In the case of a weight 
singularity, some coefficients a!)' are very large. We 
have assumed a large roundoff error at any elemen­
tary operation during the transition from a,1 to a!;-". 
However, as argued in section 7.1.1, the number of 
bad roundings involving such a coefficient is smaller 
in many cases, even if the standard version of 
Cholesky's algorithm is used. 

Finally, let us discuss the simplifying assumptions 
that were made when the local roundoff errors were 
propagated to the global ones. In particular these 
assumptions made the bias estimates too large. 

(I) The elements f,1 of the inverse F and the coor­
dinate shifts x, were overestimated slightly. I believe 
that the local peaks of F were assumed to be too 
large. Also, the superposition of a 2m random noise 
level upon the x, appears to be quite pessimistic. 

(2) Alternating signs of various quantities that 
contributed to the error budget were neglected. In 
estimating the global bias, only absolute values of in­
dividual contributions were summed up. The inverse 

Fhas some elementsf,, that are negative. However, it 
is not expected that much cancellation comes from 
the negativef,;'s. The negative elements ofF are cer­
tainly dominated by the positive ones. However, 
negative shifts will be just as likely as positive ones. 
Vincenty (1976) based his datum shift computation 
on the average shift of a selected number of Doppler 
stations. This implies that the sum of residual shifts 
for these Doppler stations must be zero. The sum of 
shifts for all stations, Doppler and others, will not be 
exactly zero, but will be close to zero. 

The most remarkable offsetting of error contribu­
tions can be expected to come from the alternating 
signs of the coefficients a1f'. The row sums of A, AW 
will be shown to have a tendency to cancel out. This 
phenomenon, together with the smooth variation of 
f,1, x,, causes an offsetting of bias contributions. This 
offsetting is most pronounced if the modified 
Cholesky version is used. 

(3) After careful study the correlation pattern of 
the global roundoff errors will reveal that the round­
off errors of closely spaced stations will be strongly 
correlated. This implies that the relative accuracy of 
closely spaced stations is less perturbed by roundoff 
than the relative accuracy of stations spaced farther 
apart. 

9.2 Sign Pattern of the Coefficients a!)' 

Let us assume temporarily that the networks refer­
ence surface is a plane. Assume further that no Dop­
pler measurements are performed and that no station 
is fixed by constraint. All row sums of the normal 
equation matrix A would vanish. Even the row sums 
of the partially reduced matrices AW would vanish: 

i. all'' = 0, p = 0, ... ,n-1. (9.1) 
j=<p+l " 

The reason for th~ vanishing row sums of A is that 
only relative measurements were performed. A com­
mon shift of all stations of the network must go 
undetected by the normals. The following must be 
true: 

,t
1 

a;1x1 = J~ a;1 (x1 +c). 

This is equivalent to eq. (9.1) for p=O. The reader 
should notice that the argument extends even to the 
case of different shifts in the two coordinate direc­
tions. To extend the argument to the partially re­
duced matrices A!{,', one simply has to keep in mind 
that any row of A!{,' is a linear combination of the 
rows of A. 

Now let us consider the case of absolute station 
positions as obtained by Doppler measurements. 
Equation (9.1) then fails to hold true in general. It 
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fails when i refers to a Doppler station or to a station 
connected to a Doppler station. Recall that connec­
tions are established by either direct observation, by 
directional coobservation, or fill-in. It is remarkable 
that eq. (9.I) continues to hold true for all coordi­
nates i referring to stations that are neither Doppler 
stations nor connected to Doppler stations. Because 
there are about 130 Doppler stations, the number of 
original stations for which eq. (9.1) is true (i.e., for 
P= 0) is originally quite large. It decreases as p in­
creases. However, for stations situated at greater dis­
tances from a Doppler station, eq. (9.1) will be ap­
proximately true. 

The validity of eq. (9.1) is further impaired by the 
fact that the reference surface of our network is not a 
plane. Again we expect that the deviations of the 
ellipsoid from a plane will not cause large discrepan­
cies. Locally, the ellipsoid is well approximated by a 
plane, and the larger coefficients refer to pairs of sta­
tions at a close distance. 

The preceding discussion can be summarized by 
stating that there is a tendency for the row sums (9 .1) 
to cancel out. In the next subsection we will examine 
how this can affect the accumulation of bias-type 
roundoff errors. 

9.3 Offsetting Bias Contributions 

Recall the basic formula (4.35) for propagating 
local biases to the global bias. Restricted to left-side 
errors, the formula states 

(9.2) 

The local errors''" having the symmetry property'" 
= '•;. depend on the history of the coefficients aif', 
asp goes from 0 to i-1. A diagonal coefficient a,'[' 1 is 
always positive. It decreases asp increases. Because 
most roundoff errors occur during the accumulation 
of the product sum over r;,, which is subtracted from 
a11 to yield a,\'-11 , and because true chopping makes 
the sum smaller, a,\i-1 1 will actually be too large in 
many cases. The local roundoff error '" tends to be 
positive. If the net were a leveling net, all off-diago­
nal elements alj'' would be negative or zero. By 
reasoning as in the case for the diagonals, we con­
clude that £,1, i#'j, tends to be negative. The U.S. net­
work is not a leveling net. Hence not all alj'' can be 
negative. However, as shown in the previous section, 
the row sums (9.1) tend to cancel out. Can we con­
clude from this that the row sums of the bias matrix£ 
show a tendency to cancel? Not directly, but we will 
try to find supporting evidence. 

First, we observe that of all the coefficients alj'' in 
row i of the original or partially reduced normals, 
only those coefficients which connect i 's station to a 

station in the vicinity will be of an appreciable size. 
This will be discussed in more detail in a later section. 
Meanwhile we will take it for granted. Next we try to 
analyze the bias 

E{EiJ,} = E{E!N} + E{EW} 

occurring during the evaluation of a product term 
r.,r,1 and its addition to the previously accumulated 
sum. Recall in this context 

(9.3) 

The bias of the local roundoff error £,1, depends on 
the absolute and relative size of the three quantities 
aiJ - ai1,_., (product sum before), r.,r,1 (product term), 
and a.,- a!j'' (product sum afterwards). Unfortunate­
ly, the dependency is nonlinear, involving the next 
larger integer powers of the base fJ. Let us study two 
important cases: 

(I) Here i is the coordinate of a station not in­
volved in a high precision measurement. As argued in 
section 7.1.1, the coefficients a()' will not undergo 
dramatic changes, and a smooth transition will occur 
from a., to av-''· This implies that most of the time 
the product term r,,r" will be small compared to the 
sum. The elementary roundoff errors £111 then can be 
neglected. E{dN} will be about cu/2, where ciJ is the 
smallest signed power of f1 bounding a,J - a)]''. The 
sum 

(9.4) 

is near zero. But can we expect that the correspond­
ing sum 

(9.5) 

will be near zero? If the base is 2, we can do so with 
some justification. But when the base is I 6, we gen­
erally expect that the positive c" caused by the 
diagonal element is more than offset by the sum over 
the negative c,;'s, some of which can be as large as c" 
itself. In other words, we can say that whatever the 
value of the sum (9 .4), the sum (9. 5) can be larger by 
a factor amounting to several multiples of the base fJ. 
The sum (9.5) can still be small enough to make the 
idea of bias offsetting attractive. 

Small row sums will cause small global roundoff 
errors if the quantities f,,x, in (9 .2) are uniform, but 
overall uniformity cannot be expected. However, if i 
is at a larger dis.tance from j (i.e. i 's station is at a 
larger distance from j 's station), f,1 will be fairly 
uniform. As long as k is near j, x, will not vary great­
ly. Hence, for a large number of important contribu-
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tions to the sum (9 .2), namely those resulting from j 
farther away from i, and k in the vicinity of j, uni­
formity will prevail. Note that k near j implies that 
al.r > and hence E{<,.} will be relatively large. The size 
of these quantities decreases as k goes farther away 
fromj. 

(2). Suppose now that i's station, call itP, is tied to 
j's station, which we call Q, by a high precision 
measurement. Let P precede Q in the elimination. 
This case was discussed in great detail in section 
7 .I. I. We take the notation from there and let 
i,i+1J,j+1 refer to latitude and longitude of P,Q 
respectively. Assume first that the standard version 
of the N.G.S. Cholesky's algorithm is in effect. The 
large coefficients a1<J'>, a~~~~1, a~ 1, a~~}.1 of eq. i will 
never drop sharply in size before elimination reaches 
this equation. As argued in section 7 .1.1, there will 
be two bad roundings per coefficient. The large coef­
ficients come in pairs; a,~ 1 is nearly equal to -af} 1, 

and a(f.l.t is nearly equal to -act).~. As a consequence, 
the biases in equation i will offset themselves nicely. 
There are no qualms about considerations such as the 
"next integer power of the base f3." The three large 
coefficients of row i+ 1, i.e., aW,,i+h aW,J, a!J'A1., will 
each suffer three bad roundings. The biases of the 
first and third offset each other nicely. However, the 
bias of a'r.L, caused by three bad roundings, is offset 
only by the bias caused by two bad roundings at a'f'J,,, 
= a'r,/ ... Hence the offsetting is incomplete. Things 
get worse when we come to eqs. j,}+ I. Offsetting is 
incomplete even if Q follows P immediately, i.e. if 
}= i+2. If other stations are to be eliminated be­
tween P and Q, this is unfortunate, and there is no 
hope for offsetting the biases of many bad roundoff 
errors. 

On the other hand, if the improved version of the 
NOS Cholesky's algorithm is used, there will be ex­
actly two bad roundings per large coefficient. Offset­
ting the biases then will be ideal. 

9.4 Reexamining the Row Sum Norms. 

Recall the definition of the row sum norm lla,.''''ll, 
in eq. (7 .4), i.e.: 

ll a,'!''ll• = L la"''l j;,.l t) • 
(9.6) 

A bound for these norms was derived in proposition 
7 .I. The reader may have wondered why we did not 
use this bound in section 8.1 to improve the estimate 
of the global bias of the homogeneous network. In­
stead, we have been working with a single bound II all 
for all elements of A. The reason for not using prop­
osition 7.1 was that for the U.S. net no improvement 
was attainable over the other method. To safely ap-

ply proposition 7.1 on the IBM 360, one must allow 
for another safety factor of f3 = 16. This spoils the 
estimate so much that it becomes inferior to the one 
obtained by the more primitive method based on a 
single bound. Only in the case of a much larger net­
work would the asymptotic superiority of the other 
method result in an improvement. (See sec. 11.2.) 

However, I firmly believe that the bound on 
llai''ll, obtained in proposition 7.1 does not reflect 
the true asymptotic behavior of these row sum 
norms. I believe that the true asymptotic behavior is 
more favorable and that, at least in most cases, the 
following is true for some constant y: 

lla,'''ll, <; y a,. (9.7) 

Exceptions to this rule occur, particularly in a few in­
stances at the very end of the triangular decomposi­
tion phase. 

Intuitive support for the assumption that lla/!''11, 
can never get too large in comparison to au, in fact, 
even in comparison to alfl, which is smallet than au, 
comes from the geodetic interpretation of the al)"s. 
We write 

JlaH''Il~ = ~i aH'' = a/1' 1 + .$; aW' sign(alf 1
). (9.8) 

The ratio 

(9.9) 

is, according to the geodetic interpretation of the 
coefficients aJY', the shift coordinate i suffers when 
coordinates j, }>i, are displaced by sign(aJY'), while 
coordinates k, p<k<i are fixed, and coordinates k, 
1<;k<O.p, k= i are allowed to vary freely. All fixing 
and shifting are done with respect to the adjusted 
position of the original network. Displacing some 
coordinatesjby amounts of+ 1 or -1, while keeping 
some coordinates fixed and allowing others to vary 
freely, should not cause coordinate i to wander too 
far. Unless the network has very funny elastic prop­
erties and is poorly anchored, I do qot expect that 
coordinate i will move more than a few units. This 
implies that the ratio lla!~'ll,!a,Y'' will not exceed a 
few units. 

Remark: For a leveling net the ratio is restricted to 
the range 

0 <; lla/!''11, I a,'/'' <0. 2. (9.10) 

This is a consequence of the maximum principle valid 
for leveling networks. Refer to Bartelme and Meiss! 
(1977) where roundoff error propagation is treated 
for a leveling network. 

The analogy of a geodetic network to a mechani­
cally elastic system suggests even more strongly that 
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(9.7) will be valid in most cases. As mentioned in the 
remarks of section 3.4, the alf 1, p<.i,j,;;n, are the 
coefficients of a stiffness matrix A'fi. This stiffness 
matrix refers to an elastic system in which coor­
dinates k, p<k.;n are fixed while coordinates k, 
1 .;k.;p are allowed to vary freely. The coefficient a)J' 
is the force exerted on coordinate i when coordinate j 
is displaced by one unit. Because of symmetry, the 
roles of i,j can be interchanged. The interpretation is 
also valid for i = }. Let us displace coordinate i by one 
unit. The a,!J' are then the reactional forces felt by i 
itself and by the other fixed coordinates}, J>i. Then 
llalf'll., as given by (9.2), is the sum of the mag­
nitudes of all these reactional forces. The force at i is 
ai/' 1• Again, one should not expect that the sum of 
the magnitudes of all the reactional forces alj' 1, }>ito 
exceed the force air' at i by a considerable amount. If 
it did, the network would either be poorly anchored 
by fixing the coordinates}, J>i, or the network would 
otherwise act like a strange mechanical machine. 

Let us take a look at figures 9.la-b which illustrate 
our line of reasoning. To make things more clear, 
both figures refer to a free distance network. Such a 
network can be viewed as a discrete analogue to a 
(not necessarily homogeneous) rubber disk which 
slides on a smooth plane surface. The circles denote 
fixed stations. (The rubber disk is pinned down to the 
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Figure 9.1 (a).-Reaction forces in a poorly anchored free-distance 

network. 

supporting surface there.) Fixing of stations is done 
with respect to the equilibrium position, except for 
station coordinate i which is displaced by one unit 
from its equilibrium position. Figures 9.la-b illus­
trate the reactional forces that may arise at the fixed 
stations. The reactional forces must have a vanishing 
resultant force and a vanishing resultant moment. 
Otherwise they will adjust themselves so that the dis­
tortional energy of the elastic system is minimized. 
(Geodetically, the distortions cause residuals to the 
observables. The weighted sum of the squares of the 
residuals is minimized.) 

Figure 9.l(a) shows a network with a poorly an­
chored station, belonging to coordinate i, with re­
spect to the other stations that belong to the other 
fixed coordinates. The requirement of vanishing re­
sultant moment causes some reaction forces to be un­
duly large. Hence the sum of absolute values of the 
reaction forces considerably exceeds the force acting 
at the displaced coordinate. Consequently II a,"' II, is 
much larger than ai/' 1, and can even be much larger 
than a,. The network in figure 9.l(b) is well an­
chored. The sum of the absolute reactional forces 
does not exceed the reactional force at the displaced 
coordinate i by a large amount. llai~'ll, will not be 
much larger than aN''. 

The most typical situation during the elimination 
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Figure 9.l(b).-Reaction forces in a well anchored free-distance 

network. 
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procedure of the U.S. network will be the partial 
reduction within a block. The block may be at the 
lowest level or at an intermediate level. In both cases, 
the outer junction nodes act as fixed stations (cir­
cles). The anchoring of such a configuration clearly 
resembles the case illustrated in figure 9.1(b), which 
supports the reasoning that II a."'' II, will barely exceed 
aH''. 

Situations similar to the one illustrated in figure 
9.1(a) may occur only at the very end of the triangu­
lar decomposition phase. Actually, the situation is 
not as bad as shown in figure 9.1(a), which refers to a 
pure distance network. In a distance network, all 
reaction moments must be taken by the fixed sta­
tions. However, in the presence of azimuths and 
Doppler stations, a large part of the reactional 
moments will be taken by these measurements. (Azi­
muths counteract rotational movements of portions 
of the rubber disk; Doppler stations counteract posi­
tional displacements.) 

Let us briefly turn to the row sums llai'''ll, defined 
by eq. (7 .5): 

llai'''ll, = J J, laif'l'. (9.11) 

The corresponding bound derived in proposition 7 .I 
is much better than in the case of llal'''ll,. This bound 
certainly reflects the true asymptotic behavior of 
llal-:'11,. The only reason for concern is the constant 
AMAx, which must be chosen in agreement with the 
largest coefficients of A. This means, it must be 
chosen in agreement with the most heavily weighted 
observations. For a coordinate i, referring to a sta­
tion not involved in a weight singularity, the constant 
!.,AX is replaced by something much smaller. 

Having exhibited qualitative reasons for my belief 
in the favorable behavior of the two row sum norms, 
I find it much harder to make quantitative state­
ments. 1 feel much like a meteorologist who is sup­
posed to predict tomorrow's weather from today's 
weather maps, based on his experience and on com­
puter models which are highly simplified and rely on 
our present incomplete knowledge of the physics of 
the atmosphere. 

Table 9 .I is the result of some statistics which I de­
rived from test adjustments of small portions of the 
network. I admit that table 9.1 is also the result of 
·some guesswork. I have tried to partition the diago­
nals a, into four different size classes. The bound­
aries are denoted by II all.-, r = 1,2,3,4. The fractions 
of diagonals falling into the various size classes are 
denoted by tp,. For any size class, we have allowed 
for separate constants by which the two row sum 
norms llai•!'ll, llai(''ll, may exceed the diagonals a,,. 
These two constants are denoted by y, d,. 

TABLE 9.1.-A rough estimate of size distribution for diagonal 
coefficients a,, and the /actors y,. d. by which the two row sum 

norms exceed a,,. 

r II all. 11•11 ... 
'I'· y. 0, m·' m-' 

1 4.5E6 2.8E5 0.10 2.5 2 
2 2.8E5 1.8E4 .15 5 2.5 
3 1.8E4 1.1E3 .65 10 5 
4 1.1E3 0 .10 50 10 

For instance, row I indicates that 10 percent of the 
diagonals a, are assumed within the range of 4.5E6 ;. 
a,;. 2.8E5, and that llal~'ll, <;;2.5 a,, and llai~'ll, <;; 
2 a, in these cases. (Coefficients a, a're measured in 
units of m-'.) 

9.5 Aiming at Realistic Bias Estimates for the 
IBM360 

Starting with eq. (4.35), with the right-hand side 
contribution omitted, we use 

(9.12) 

Using the bound llxll =I 0 on the x,, we arrive at: 

E{<,).;; llxll t, l.t:,l ~. IE{<,,}i. (9.13) 

Our next step is to estimate the sum 

(9.14) 

We recall that the local roundoff error £1, is the 
superposition of 2 J-11, + I ~ 2 J.l.,. elementary round­
off errors <.Jl"· We assume that IE{£);"}1 is bounded 
in terms of I alf 'I as 

To the factor~;. a value will be assigned later. We get 

~. IE{<,.}i <;; ~' ~. I a1\:' 'I • 2 ~-'-" • 16-"/2. 

Remembering that iJ.J~< ~ IJ..o, we get 

~. IE{<,,}i <;;~1 J.I;;~, laM''I•16-". (9.16) 

Note that pis still unspecified in this expression. We 
introduce 

y, =Max { t laR''ifa,}. 
p k-;1 

(9.17) 

This allows us to write(9.16) as 

f IE{h}l<;;".u--y-a .. •16-". Jc=l ·1 't'J r.o .1 'J.I 
(9 .18) 

Inserting this into (9.13), we arrive at 

·--------------------------------
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Here we have used y1a11 as a bound on L la}l''l ,., 
rather than as a bound on ,L. la/:'1· This is ad­
missible because for}.-p, alf' = "6, and because (9.17) 
must also hold for}= p+ I. 

Referring to table 9.1, we evaluate (9.19) separate­
ly for the four size classes. We get 

IEg,}l.-llxll ~ ~. r.llall. * L /.1 1'11 •!6-". 
r-1 a;; .n 

c/u.<-< r 

(9.20) 

or 

(9.21) 

We evaluate the following sums which we call 4',: 

(9.22) 

This was actually done before during the evaluation 
of formulas (8.21) and (8.22). For all i's referring to 
coordinates situated in a 2° x 2° quad denoted by e. 
we found that 

f. J:. " .. ~ L ,.,,,,,,, n + 
j=l JiJ r-JJ X Jp;r: X 

+ peak contribution due tofY'''". (9 .23) 

No new computations are necessary. We use the in­
termediate results obtained during the evaluation of 
the en tries in table 8.4. The values are listed in table 
9.2 and are denoted by 4',. 

TABLE 9.2.-Evaluation of eq. (9.23) 

t ). 
Global Local '1', 

m' m' m' 

39 77 0.792E6 0.275E6 0.107E7 
47 69 .114E7 .605E5 .120E7 
47 121 .752E6 .225E6 .977E6 
41 97 .576E6 .715E5 .647E6 
35 Ill .576E6 .509E5 .627E6 

It remains for us to assign values to the factors~ •. 
These values are supposed to be a compromise be­
tween all the various effects that were reviewed and 
discussed in sections 9.1 to 9.4. Our chosen values are 
listed in table 9.3. We motivate their choice as 
follows: 

TABLE 9.3.-Choice of factors f. 

r t. 
I 0.125 
2 .25 
3 1.00 
4 1.00 

Using such considerations as the "next power of 
the base {J= 16," begin with a factor of 16. The fac­
tor 0.5 is applied because, in most cases, one elemen-

tary error out of £Hk1, E.fjt1 is effective. Another factor 
of 0.5 is applied to compensate for the overestima­
tion of thex, by llxll = 10. The factor 0.25 is supposed 
to take care of cancellations resulting from alternat­
ing signs. This already explains the values for r = 3 
and 4. For r = I and 2, i.e., for the two largest size 
classes where weight singularities are contributed, we 
allow another factor 0.25 to account for the large 
coefficients where only a fraction of all the roundings 
is bad. Finally, we apply another factor of0.5 at r= I 
because not all the large coefficients are equal to the 
upper bound of this size class. 

Based on these assumptions, we arrive at the fol­
lowing formula: 

IE{~,}I.- 10 i, ~.II all. y, IJ!, 4', • 16-". (9.24) 

The evaluation results are given in table 9.4. The 
bounds refer to the first iteration where coordinate 
shifts exceeding I 0 meters are anticipated. 

TABLE 9.4.-Attempted realistic estimates for global bias-type 
roundoff errors-on the IBM 360. 

4 ). 
Bound 

m 

39 77 4.81!-5 
47 69 5.2E-5 
47 121 4.21!-5 
41 97 2.81!-5 
35 Ill 2.81!-5 

It is seen that the bounds are smaller by about two 
powers of 10 than the safe bounds obtained in chap­
ter 8. They indicate that about 4 to 5 correct digits 
can be recovered during any iteration. 

9. 6 Remarks on Standard Deviations of the 
Global Errors 

A similar calculation could be performed to obtain 
improved estimates of a{~,}. We will not document 
such a calculation here, but merely mention that the 
improvement would hardly exceed one power of 10. 
It is interesting to ask for the reason for such a 
meager result. 

First of all, there are no offsetting effects. Second, 
one has to keep in mind that a{~,}. being a mean 
square average, enhances the contribution of the 
larger roundoff errors relatively more than E{~,} 
does. This is theoretically obvious; and it is also indi­
cated in chapter 8, where the various tables show, 
that the contributions of the local peaks of the co­
variance are relatively larger in the case of the stan­
dard deviations. Therefore, we should try to improve 
these local contributions, and it is here that a factor 
of about 1110 could be gained. Simply by being less 
pessimistic about the number and size of the large 
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elements of A, one could lower the estimates of o{C.}. 
All other considerations which, as in the case of the 
bias-type estimates of the previous section, lead to a 
replacement of the 1-type counts by n-type counts, 
have little effect on improving o-type estimates. 

9. 7 Global Roundoff Errors of the Relative Position 
of Two Closely Situated Stations 

To illustrate let P, Q denote two stations which are 
located at a distance below 20 km. The relative posi­
tion of the two stations, i.e., the difference vector 
between P and Q, will generally be less perturbed by 
roundoff than the absolute positions of P, Q. This 
can be inferred from eqs. (4.33), (4.35), and (4.36a), 
and from the properties of the inverse. Let i~ ;, refer 
to the latitudes of the two stations P, Q. Let us inves­
tigate the global roundoff error C,,,, suffered by the 
latitude difference. We have 

(9.25) 

Again, we restrict our attention to the left-side errors 
during triangular decomposition. Equation (4.33) 
then implies that 

(9.26) 

For a coordinate j whose station R is far away from 
P, Q it will hold that/,,, nearly equals/,,_,. The geodet­
ically minded reader may infer this from/,_;, which is 
composed of a smoothly varying global component 
and a quickly decaying local one. The elastostatic in­
terpretation of f,j supports our reasoning even more 
strongly. In this interpretation, /,1 is the shift suffered 
by coordinatej if a unit force is applied to coordinate 
i. Therefore, it is assumed that before the application 
of the unit force, a state of equilibrium has been 
reached. If R is far away from P, Q, the principle of 
St. Venant guarantees that shifts of j due to i, and i, 
will be nearly equal. 

Quantitative statements are more difficult to 
make. From equations analogous to (4.35) and 
(4.36a) we deduce 

+ (J,,,- J.,,)x1]' o'{£1,). (9.28) 

Only the differences/,,;-/,1 enter these formulas. As 
argued above, these differences will be small if j is 

farther away from i, i,. Referring to table 9.2, we can 
neglect the global contributions. 

The resulting improvement is not yet impressive 
because the local contributions are of the same mag­
nitude as the global ones. There are three reasons 
why the local contributions will also be subdued. 

(I) /.,.;- /., 1 will also be smaller thanf1 for many 
j's in a close vicinity. Local adjustments indicate that 
the relative accuracy is better than the global one by 
about one power of 10. Let us cautiously assume that 
an improvement of 1/2.5 is obtained in this way for 
bias type estimates. 

(2) The local estimates given in table 9.2 are still 
pessimistic. We may disregard the loose chunks of 
the network whose relative accuracy is of little inter­
est. The remaining local peaks of f 1 are certainly 
smaller in areas of dense control. However, it is in 
these areas where most calculations are done. Let us 
assume that as a result of this phenomenon another 
improvement of 1/2.5 occurs for bias type estimates. 
(One should bear in mind that this improvement also 
occurs to the global accuracy of stations. However, 
here the contribution of the global part of /,1 

dominates the contribution of the local part, whereas 
in the case of relative accuracy the contribution of 
the global part of/,.; is missing.) 

(3) The local contributions were estimated with 
the assumption that we are dealing with a station sit­
uated on or near a high-level boundary. Such a sta­
tion will be eliminated during the later stages of tri­
angular decomposition, or it will have stations in its 
vicinity which are eliminated at a later stage. This 
will make the local contribution of the local roundoff 
error large since the n and I counts for the surround­
ing local area are large. It follows that for stations 
which are not close to a higher block level boundary, 
an additional improvement of relative accuracy will 
occur which may amount to one or two powers of 10 
for the bias. 

Let us summarize the preceding discussion by stat­
ing that the bias of the relative roundoff error of two 
closely situated stations may be smaller than the 
global bias by one to three powers of 10. The im­
provement of the standard deviation will not be as 
significant and is estimated not to exceed one power 
of!O. 

10 ROUNDOFF EXPERIMENTS 

10.1 Moose-Henriksen Network 

Data from Moose and Henriksen (1976) were used 
to perform some detailed roundoff experiments. Sec­
tion 5.4 already gives some statistics on this portion 
of the U.S. network which covers areas of Mississip­
pi, Louisiana, and Alabama. The network version 
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used in our experiments had 1336 triangulation sta­
tions, of which five were Doppler stations. A total of 
73 distances and 25 azimuths were included. A sketch 
of the network is shown in figure 10.1. 

In chapter 5 we previously discussed some of the 
computational results obtained by Moose and Hen­
riksen (1976). Now we will refer to additional 
calculations which used only input data of the 
Moose-Henriksen network adjustment. These addi­
tional calculations were done by W. H. Dillinger. 
Some tempor'lrY changes to the NGS Cholesky sub­
routine were made by R. H. Hanson to provide sta­
tistical information relevant to the accumulation of 
roundoff errors. Programing support was also given 
by J. F. Isner. 

10.1.1 Purpose and design of the roundoff 
experiments 

The experiments were carried out on the CDC 
6600. This computer offered the advantage of simu­
lating unbiased as well as biased arithmetic in an easy 
way. A further advantage was that the precision 
could be easily extended to allow one number to be 
represented by two computer words, each having 60 
bits. The results of this double precision run could be 
used as an absolute basis of comparison. They were 
practically as good as the mathematically exact solu­
tion. 

The purpose of the experiments was to check the 
following items: 

(I) The size distribution of the coefficients of A, b 
of the original and of the partially reduced normal 
equations. As pointed out in chapters 7 ,8, and 9, it is 
essential for our estimates that not too many coeffi­
cients of A be very large and that the number of large 
coefficients does not significantly increase during the 
elimination procedure. Furthermore, it could be veri­
fied that the right hand sides b are actually well be­
haved and do not constitute a critical factor in the 
roundoff analysis. 

(2) The number of operational steps. By counting 
the number of product terms r.,r,1 evaluated during 
the triangularization phase and the percentage of 
these terms which resulted in a nonzero value, we ob­
tained a realistic picture of the number of nontrivial 
operational steps needed to partially reduce a subnet­
work of some 1,300 stations. The counts could be 
compared with those predicted by our idealized 
model described in chapter 6. 

(3) Check of the validity of the roundoff model. 
At least in the case of a small realistic example of the 
U.S. network it could be shown that our statistical 

assumptions about the behavior of the elementary 
roundoff errors were sound and that the linear model 
used to propagate these roundoff errors was reason­
able. 

The following computer runs were made. 

(A) Adjustment of the network as a whole in dou­
ble precision. The shifts obtained provided the 
desired absolute basis for comparison. 

(B) Adjustment of the network as a whole with 
standard (i.e., not truly rounding) arithmetic. Com­
parison with the results of (A) yielded the true 
roundoff errors for the biased CDC 6600. 

(C) Adjustment of the network as a whole with 
truly rounding arithmetic. Comparison with the re­
sults of (A) yielded the true roundoff errors for the 
unbiased CDC 6600. 

(D) Adjustment by the Heimerl blocking tech­
nique. A partition was used which had 37 first-level 
blocks, 13 second-level blocks, 4 third-level blocks, 
and I fourth-level block. This adjustment was done 
only once, with the truly rounding instructions set 
into effect. 

During adjustments (B) through (D), the above 
mentioned statistics on size and distribution of 
nonzero elements were performed. In addition, we 
attempted to obtain a bound on the bias and on the 
standard deviation of the global roundoff errors by 
calculating mean and standard deviation of the left­
side local roundoff errors <u from the actual numeri­
cal values of the partial sums 

(10.1) 

as they were available during the Cholesky reduction. 
The details of this a posteriori roundoff analysis are 
described in the next section. 

10.1.2 A posteriori roundoff error analysis 

The reader is reminded of our discussion of 
elementary roundoff errors efN, eJN as they arise and 
accumulate during the evaluation of the product 
sums 

(10.2) 

When a product term r~c,rk.i is evaluated, an elemen­
tary roundoff error <IN occurs. When the product 
term is added to the partial sum (10.1), an error •IN 
occurs. In most cases the partial sum will be larger 
than the term added. Hence ef.i~> will dominate E.h~>. 
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Figure 10.1.-Test area used by Moose and Henriksen for first- and second-order networks. 
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The magnitude of an eventual bias and of the stan­
dard deviation will be 

(10.3) 

I ' a{<'~'}.; --I L r,. r,,,l [J·•. ,, 1[12 ,., (10.4) 

Actually we should have used the next integer powers 
of the base {J = 2 to properly bound the numerators, 
but we will be satisfied with the above approxima-
tions. 

Introducing the following sums 

(10.5) 

i-1 " 
S1. = L 12: rurul' 

I) k=l /:1 ' 
(10.6) 

it becomes clear that bias and standard deviation of 
the local roundoff errors <u are approximated by the 
following expressions: 

IE{<u}I.;+AufJ·• 

o{<u}.; Jrrsu[J·•. 

(10.7) 

(I 0.8) 

In order to arrive at global estimates for E{C,}, o{C,} 
we take (4.35) and (4.36a) restricted to the left-side 
error contributions. Thus we take 

(10.9) 

o{C,} = [ J, /1, xf a'ku} + 

I 
+ t . . ~ .. U:.~x, + J,,x,)' a'{<1,} ]'. (10.10) 

A straightforward procedure would have been to 
evaluate these formulas using numbers j,1, x, as they 
were obtained from the adjustment. The solution 
vector x occurring in these formulas is known and 
causes no problem. However, to calculate all the 
elements fu of the inverse appeared to be too 
laborious, even for. a small network. Hence a simpli­
fied procedure was used which was based on element­
wise bounds llfll and llxll on F and x. By summing 
(10.5) and(I0.6) we obtained 

(10.11) 

S' = i i s~ 
'"'' .i=i 

(10.12) 

They give rise to the following estimates of bias and 
standard deviation of the global roundoff errors: 

Jmill ,;: A llfll2 _., 
llxll ~ 

_illJ_ ,;: - 2- s llfll2•". 
llxll ~v'TI 

(10.13) 

(10.14) 

These formulas are obtained by bounding j,1, x, in 
(4.35) and (4.36a) in terms of llfll and llxll and car­
rying out the summations in a straightforward way, 
bearing in mind the definitions and relations of (I 0.3) 
to (10.4). We preferred to divide the formulas by llxll 
in order to obtain errors relative to the largest coor­
dinate shift. In the present example the largest shift 
will be about 5 m, not I 0 m as in the case of the entire 
network. 

Remark. The adjustments were done in measuring 
units corresponding to arc seconds of latitude and 
longitude. In this study we scaled all values to the 
meter. This caused a small complication because the 
scale factors for the two coordinate directions differ 
by a factor equal to the cosine of the latitude. We ig­
nored this difference, and consequently scaling is 
strictly correct for only the latitude. Some of the 
numbers presented below will be slightly off. Refer­
ring to (10.13), (10.14) we will specify values for A,S 
which are too small by a factor between I and 0.5. 
Such a factor is not significant in roundoff estimates, 
and we will go along with these slightly wrong scale 
factors. 

As a bound llfll for the elementsf,1 we took 

llfll = (0.45m)' =0.20m'. (10.15) 

This estimate was obtained by looking at the diag­
onal elements j,1 of the inverse. These diagonal ele­
ments were quite uniform in size, suggesting, what 
was also plausible from other reasons, that the main 
contribution to the inverse F came from the uncer­
tainty of the Doppler positions for which the rms er­
rors of 0.75 m in each coordinate direction were 
assumed. The network behaved like a fairly stiff disk 
which was fixed by weak elastic forces to the five 
positions corresponding to the Doppler stations. The 
bound in (10.15) is not rigorous and is exceeded by 
some outliers. However, most elements are smaller. 

10.1.3 Results of the Moose-Henriksen network 
experiments 

10.1.3.1 Adjustment of the network as a whole 

The following values for A,S were obtained: 

A = 5.0E9 m·' S = 5.5E7 m·'. 
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This leads to the following estimates: 

lillJl 6 llxll <;;J.6E-

... in the case of chopping arithmetic (10.16) 

AtL 23 8 llxll .; · E-

... in the case of rounding arithmetic. (10.17) 

The true relative roundoff errors obtained by com­
parison with the double length arithmetic results were 
the following: 

6E-7 ... in case of chopping arithmetic (I 0.18) 

8E-9 ... in case of rounding arithmetic. (10.19) 

The agreement with the values predicted by (10.16) 
and (10.17) is considered satisfactory, even if we ad­
mit that the values in ( 1 0.16) and ( 1 0.17) came out a 

little bit too small as a result of our "cheating" on 
the scale factors. The a-type estimates are too large 
by a factor of three. Without "cheating," this factor 
would have been four to five. Overestimation may be 
due partly to the overestimation of the inverse which 
has many elements smaller than those implied by 
(10.15). One should also note that longitude shifts 
were consistently smaller than latitude shifts. The 
bias estimates are too large by a factor of six (which 
should actually be nine to ten). Here one should note 
that (10.16) does not account for any offsetting of 
biases caused by alternating sign. 

We proceed to specify the statistics obtained on the 
size of the coefficients of the normal equations. 
Table 10.1 shows how the diagonals of the original 
and the fully reduced normals decompose into size 
classes. By comparing these entries with table 9 .1, the 
assumptions made in chapter 9 are conservative for 
this test network. The columns titled "Relative" in 
table 10.1 contain occupancies of the size classes and 
should be compared to the corresponding numbers 1.J! 
in table 9.1. 

TABLE 10.1-Size dt'stribution of diagonal coefficients in the original and fully reduced normal 
equations 

Size- class Counts for Counts for 
From To original normals reduced normals 
m·• m·• Absolute 

4.5E6 - 1.8E4 161 
1.8E4 - l.IE3 2378 
1.1E3 - 0 133 

Total 2672 

The last two columns in table 10.1 refer to there­
duced normal equation system. The reduced system 
is Rx = s, where R is a triangular matrix correspond­
ing to the Cholesky decomposition A = R'R. For 
ease in comparison with the numbers of the original 
normals we multiplied all rows of the reduced system 
by its diagonals ru. This multiplication transforms ru 
into al)-". We recognize from table 10.1 that the 
number of large coefficients does not increase. 
Rather, we notice a decrease in the number of large 

Relative Absolute Relative 

0.060 70 0.026 
.890 2162 .809 
.050 440 .165 

1.000 2672 1.000 

and medium-sized coefficients during the reduction. 
This completely confirms our reasoning in chapter 7. 

Additional statistics on the size of the coefficients 
are shown in table 10.2. Here we find the maximum 
and average values for the diagonals a,, the two row 
sum norms II a, .11, and II a, .11 ,, and the right- hand side 
coefficients of the original and the reduced normals. 
The values of the reduced normals result from multi­
plication by the diagonals, as pointed out above. 

TABLE 10.2.-Additional statistics on the size of elements in the original and reduced normals. 

Original normals Reduced normals 
QuantitY. Maximum Average Maximum Average 

m·• m·• m·• m·• 

a, 1.5E6 2.3E4 1.4E6 1.2E4 
lla,.u. 3.1E6 4.2E4 2.8E6 2.8E4 
!Ia,. II, 2.1E6 1.4E5 2.0E6 l.IE5 
[b,[ 3.5E5 l.OE3 3.5E6 5.0E2 

·~·--·~~-
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Finally, we consider the number of product term 
evaluations. It was found that 1.13E7 times a prod­
uct r.,r,.~ had to be evaluated. Only in 4 percent of 
these cases was the result zero. This indicates that 
only a small portion of the computational effort was 
wasted. Multiplying 1.13E7 by 2, we obtain 

r ~2.3E7. (10.20) 

Returning to eq. (6.12) with the evaluation now 
simplified because there are no boundary stations, we 
find that by applying this equation a value of 4.6E7 is 
predicted. (We have used i=2672 and a value of 
W= 130 which follows from eq. (6.5) with a=0.8.) 
We are satisfied to see the magnitude of the r -count 
predicted correctly by a formula which was based on 
very idealized assumptions. 

10.1.3.2 Adjustment by Heimerl blocking 

It is pointed out that the decomposition of a sub­
network of less than I ,500 stations into 37 first-level 
Heimerl blocks is not a very realistic procedure in 
view of the anticipated Heimerl blocking design for 
the U.S. network. Subnetworks of this size will be 
decomposed, at most, into four blocks. The reason 
for partitioning the Moose-Henriksen network into 
so many blocks was unrelated to the roundoff ex­
periments. It resulted from a desire to have a thor­
ough check on the validity of the computer programs 
for higher level block design. The results obtained are 
nonetheless interesting. The values for A and S were: 

A = 6.9E8 m-' S = 1.9E7 m-'. (10.21) 

This leads to the estimates: 

IEKll .:: 8 6E-7 
llxll ~ · 
... in the case of chopping arithmetic (10.22) 

wr "1.4E-8 

. . . in the case of rounding arithmetic. (10.23) 

The true relative roundoff errors were available for 
only the case of rounding arithmetic. They amounted 
to approximately 

2.5E-9 

. . . in the case of rounding arithmetic. (10.24) 

The total count of product evaluations resulted in 
2.5E7. It is rather surprising that only about half of 
these evaluations resulted in a nonzero product. The 
reason for this may be that too many Helmer! blocks 
were used. It may also be that the programs for re-

ducing the fill- in at a higher level were not yet fully 
developed. Anyway, we obtained 1.3E7 nonzero 
product terms r,;r•Jo which is about the same num­
ber as before. The reason for smaller values of A 
and S and, consequently, for smaller roundoff er­
rors, must be explained by the smaller coefficients 
aW' encountered during the reduction of the normals. 
The smaller coefficients mu~t be explained by a better 
anchoring of the stations already eliminated by those 
not yet eliminated. Recall that stations which are 
eliminated last tend to be arranged along block 
boundaries that criss-cross the network. These 
frames of noneliminated stations give the network 
much strength throughout most of the reduction 
process. 

This again illustrates the interesting fact that in 
roundoff studies not only is the strength of the entire 
network relevant, but also the strength of the subnet­
works which comprise, at any stage of the triangular­
ization procedure, the total number of stations elimi­
nated as free ones and the total number of nonelimi­
nated stations as fixed ones. 

10.1.4 Extrapolation of the test results 

It is interesting to extrapolate the test results of 
(10.18) and (10.19) to the whole network. We adjust 
the estimates of (10.18) and (10.19) by taking into ac­
count two effects: 

(I) The inverse of the whole network is smaller 
than the inverse of the test network. The whole net­
work is positioned by 120 Doppler stations, the test 
network by only five. This will decrease the diagonals 
fu by a factor of one-half to one-third. The decrease 
of the off-diagonals will be much greater, and may 
amount to a factor of one-tenth. Hence we multiply 
the bias estimate (10.18) by 0.1. The a estimate, 
which is based on a weighted square mean of the f.~, 
does not react as strongly to the smaller off-diag­
onals. Hence we allow a factor of only one-fifth in 
the case of (10.19) . 

(2) The number of operations is much larger in the 
case of the entire network. The test network yielded a 
r count of2.3E7. For the whole network r = 1.2Ell 
was the estimated value. This accounts for a factor of 
1.2Ell/2.3E7 = 5,000 for bias, and a factor of 
V 5,000 = 70 for standard deviation . 

The extrapolated figures then are given by: 

lEg;} I .::3 OE-4 
llxll "' · 

... in the case of chopping arithmetic (I 0.25) 
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/aU, I/ 
llxll <:; l.OE-7 

... in the case of rounding arithmetic. (10.26) 

Eq. (10.26) suggests that about six or seven correct 
decimal digits are obtained for rounding on the CDC 
6600. This surpasses our safe estimates, given in 
chapter 8, by about two decimal digits. The less con­
servative estimates of chapter 9 are surpassed by 
about one digit. 

Because the structure of the entire network is not 
quite the same as that of the small network, the ex­
trapolated values should be regarded with reserva­
tion. 

10.2 Roundoff Experiments by Ebner and Mayer 

Ebner and Mayer (1976) reported on extensive 
roundoff experiments that were done for photogram­
metric block networks. Incidentally they also used a 
CDC 6600, and their calculations were also done with 
mantissas of 48 bits. However, they employed the 
standard instruction set which is chopping. A portion 
of their experiment was concerned with planimetric 
blocks. These blocks have a geometric strength sim­
ilar to purely angular geodetic networks. Absolute 
positioning and scale of the photogrammetric blocks 
resulted from a number of fixed control points at the 
block perimeter. Both the number of control points 
as well as the size of the networks were varied to 
study the effect of these design parameters onto the 
global roundoff errors. 

In Meiss! (1972a) and (1976) the geometric strength 
of a planimetric block with dense perimeter control 
was shown to be qualitatively equivalent to that of a 
traditional geodetic network involving directions, 
distances, and azimuths. This means that the ele­
ments of the inverse F of such a network show a 
tendency to grow proportional to the logarithm of 
the number of stations. Because the logarithm grows 
very slowly, the elements/;1 ofF can be viewed as be­
ing bounded for our present purpose. 

For a block of 2,500 stations with dense perimeter 
control, the roundoff errors amounted to a loss of 
three decimal digits. The relative ·errors IWIIxll 
were about 8E-11. This is astonishingly small. How 
can this figure be reconciled with the relative errors 
of about 8E-7, which we obtained for our network of 
I ,300 stations? The answer lies in the local structure. 
The photogrammetric blocks are very homogeneous. 
Therefore the diagonals of the original normals must 
be quite uniform. Our network has weight singulari­
ties that make some of the coefficients of the original 
normals larger than most of the other coefficients by 
a factor of about IE4. This factor explains the differ-

ence nicely. In fact, it explains it almost too well 
because we should stress that there are also other dif­
ferences that should be considered. The photogram­
metric block has about twice as many stations. This 
may increase the number of computational steps by a 
factor of four. Ebner and Mayer also used Chol­
esky's method, but it was organized differently than 
the NGS programs. I do not expect that this had a 
large effect on roundoff. Finally, we must consider 
differences in local topology other than those already 
discussed. Balancing all these factors, we conclude 
that the Ebner-Mayer experiments can be viewed as a 
confirmation of our results, where we allow for an 
uncertainty of about one to two decimal places. 

Remark. Ebner and Mayer also gave results for 
blocks without redundant perimeter control. Here 
relative errors of about I E-7 were observed. The ad­
ditional loss of about four decimal digits must be due 
mainly to a much larger inverse F associated with an 
unconstrained angular network. Referring once more 
to Meiss! (1976), the elements of the inverse showed a 
tendency to grow in proportion to the number of sta­
tions. For a network of 2500 stations (this corre­
sponds to a choice of n= 50 = V 2500 in the refer­
enced paper, where the number of stations is about 
equal to n'), the difference between a constrained 
perimeter and an unconstrained perimeter can be 
about n'=2500. (See eqs. (3.10) and (8.26) in Meiss! 
(1976).) This explains strikingly a phenomenon en­
countered in the Ebner-Mayer experiments. At the 
same time, it confirms that" we have identified cor­
rectly the main sources of the global roundoff errors 
and that our model for propagating roundoff errors 
from their origin to the final results is sound. 

10.3 Roundoff Experiments by Ehlert 

To test the validity of the network adjustment pro­
grams for difkrent computers and to study the 
roundoff errors experimentally, a computer program 
generating nearly regular and homogeneous test net­
works was designed for the members of the Interna­
tional Association of Geodesy (JAG) Special Study 
Group 4:38, "Computer Techniques in Geodesy." A 
program list was circulated as an appendix to Cir­
cular Letter No. 2/1973. Together with my coworker 
K. Stubenvoll, I used it for some tests on a UNIVAC 
494. The roundoff errors of the station coordinates 
were so strikingly correlated that I was prompted to 
do further theoretical research. Together with my 
coworker N. Bartelme, a thorough study was under­
taken on roundoff error propagation in homogene­
ous leveling networks. Supporting test calculations 
are reviewed in the next section. 

Although a few members of SSG 4:38 reported test 

-- ·---·----------- -----------------------
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results for small networks (See Meiss! (1975a)), no 
one made a systematic comparison of roundoff er­
rors for larger networks. However, a calculation 
done by D. Ehlert offered a check by itself. Ehlert 
adjusted a network of I, 141 stations by Helmert 
blocking on a TR 440 computer. Because the adjust­
ment was done in a plane projection and the original 
normals were formed for the unconstrained, freely 
floating network, the reduction of the normals 
offered a check on their rank deficiency. The check 
indicated that about nine decimal digits of the tri­
angularized normals were correct. 

The calculations were done in single precision. The 
TR 440 has a base of {3 = 16 and a mantissa length of 
38 bits. This is unusual because it is not divisible by 4. 
Its accuracy corresponds to 10 or II decimal digits. 
The TR 440 is a "beautiful" machine because it truly 
rounds the result of an arithmetic operation. 

It would be a fallacy to equate the perturbations 
observed in the singularity check to the local round­
off errors, £,1• The <;;'s are errors traced backward to 
the original system. The singularity check does not 
refer to the original system but rather to the triangu­
larized system. One way to analyze the errors of the 
triangularized system is to propagate the backward 
traced errors''' forward again by the following steps: 

The perturbed original system is (4.30), i.e.: 

(4 + <) (x + ~) = b + ~ 

This system must be triangularized without further 
error. If R7 R is the Cholesky decomposition of A, 
and (R + d)'(R +d) is that of A+£, it follows that in 
linear approximation 

R7 d + d7 R = £. (10.27) 

These relations can be used to calculated recursively. 
In the present case, a shortcut is available. Ehlert's 

block has about as many stations as the test network 
treated in section 10.1.3.2. Hence ther- counts should 
be comparable. Assuming r ~ I E7, and taking into 
account the homogeneity of the network, as well as 
its strength, which should not make JlaJI • llfll much 
larger than one, we conclude that a pessimistic upper 
bound for the global roundoff errors suffered by the 
coordinate shifts is given by a loss of log, 01{F deci­
mid digits. This amounts to three or four decimal dig­
its. Because of the tapering effect of the coefficients 
a)J' we can expect a better result, a loss of about two 
digits. Recall that Ebner-Mayer adjusted a homoge­
neous network which had twice as many stations. 
They used a chopping arithmetic and lost only three 
decimal digits. The TR 440 is a rounding machine 
and the present network is smaller. Hence a loss of 
two digits appears to be a reasonable estimate. 

The coordinate shifts calculated during the early 
stages of back substitution should have as many cor­
rect digits as the number of coefficients at the bottom 
of the triangularized system. These shifts are ob­
tained from the coefficients at the bottom by a few 
arithmetic operations. We conclude that the coeffi­
cients at the bottom of the triangularized system have 
only the last two decimal digits perturbed. This is in 
fair agreement with the perturbations resulting from 
the singularity check. 

10.4 Roundoff Experiments with Idealized Leveling 
Networks by Bartelme-Meissl 

Bartelme and Meiss! (1975, 1977) reported on the 
theoretical investigations of roundoff errors during 
the direct solution of normal equations of large 
homogeneous leveling networks. Supporting test cal­
culations have been carried out. True rounding was 
simulated by means of specially written subroutines. 
The simulated computer had a base of {3 = 2 and a 
mantissa length ofT= 16. 

A square shaped leveling net of 15•15 = 225 sta­
tions was adjusted. Gauss-Jordan elimination was 
used to solve the normals. The theoretical formulas 
predicted a loss of eight binary digits. The actually 
observed roundoff errors came very close to this 
number. 

The correlation pattern of the roundoff errors is 
beautifully illustrated by figure 10.2. What looks like 
a peak is actually the fixed station at the center. All 
other roundoff errors were negative. It was a picture 
such as this one that started the theoretical research 
into roundoff errors in geodetic network computa­
tion. 

10.5 Roundoff Experiments Related to the 
Kentucky-Tennessee Test Area. 

About a year after this report was completed and 
while the manuscript was being reviewed, W. H. Dill­
inger provided me with additional test results from a 
network covering most of Kentucky and Tennessee. 
This network, comprised of 3,380 stations, is bound­
ed by the 35° and 38° parallels and by the 83° and 88° 
meridians. It was divided into four first-level 
Helmer! blocks to be combined subsequently into 
one second-level block. 

The network was processed primarily as a test of 
NGS programs and procedures for the new adjust­
ment of the North American Datum. A detailed ac­
count of this pilot test can be found in Timmerman 
(1978). The roundoff experiments represented only a 
marginal feature. Their design is similar to that 
described in section 10.1 for the Moose-Henriksen 
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Figure 10.2.-Distortion of a regular leveling network caused by roundoff errors. 

network. However, thete are a few shortcomings in 
the present case, namely: 

(I) Because of the larger size of the network, it 
was considered too expensive to calculate a double­
precision solution. Hence only two single-precision 
solutions obtained on the CDC 6600 could be corn­
pared. They refer to the cases of chopping and 
rounding ari thrnetic. 

(2) No information was available· on the inverse 
because the newly developed routines for Helmer! 
blocking were still incomplete. 

(3) No Doppler observations were used. The abso­
lute position of the network was arbitrarily fixed by 
constraining one station to its approximate position. 
In addition, about 120 stations along the perimeter 
were not rigidly connected to the network. The posi­
tions of these stations were also constrained to their 
approximate positions. 

A comparison of the chopped and rounded solu­
tions showed agreement to about six leading decimal 
digits for the larger coordinate shifts. Since the 
chopped solution is inferior to the rounded solution, 
we derive essentially the error of the former one. The 
relative error of the chopped solution, i.e., largest 

absolute error divided by the largest coordinate shift, 
carne out to about 1E-6. 

Another interesting feature was the great uniformi­
ty of the observed absolute errors, which is in full 
agreement with the strong correlation of the global 
roundoff errors previously inferred theoretically. 
Recall that we have repeatedly pointed out that the 
accuracy of the relative position between stations in a 
vicinity will be superior to the, global accuracy. (See 
section 9.7 .) 

The remaining features of the Kentucky-Tennessee 
roundoff experiment are the same as those described 
in section 10.1.2 for the Moose-Henriksen network. 
There is no need to duplicate the explanations of the 
a posteriori analysis, which is based on statistical in­
formation on number and size of coefficients and 
partial sums arising during Cholesky decomposition. 
Using the same symbolism as in section 10.1, we 
merely state the results. 

The numbers A and S (see eqs. 10.11 and 10.12) 
resulted in 

A = 3.7E10 

S = 1.7E8 

(10.28) 

(10.29) 

-----------------------------------
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Making certain assumptions on the bound IIlli on 
the elements of the inverse, which are described 
below, we obtain: 

~~Mrll .:; 6.6E.-<i 

... in the case of chopping (10.30) 

lifrl .:; 1.?E-s 

... in the case of rounding (10.31) 

These results are analogous to those of eqs. (10.16) 
and (10.17). To derive them according to (10.13-14) 
we need llfll. Since no information was available on 
the inverse, we were forced to guess. We have 
assumed llfll = 0.05 m = (0.22 m)' which is smaller 
by a factor of one-fourth in comparison to the 
Moose-Henriksen net. As a guideline for our· guess 
we used the fact that constraining at least one station 
tends to make the errors smaller than those of a net­
work whose absolute position is derived from five 
Doppler observations with rms errors of about 1 m. 

The number in eq. (10.30) must be compared with 
the experimentally observed error of the chopped 
solution which was about 1E-6. The agreement is 
good; however, we must bear in mind the uncertain­
ties in estimating llfll. 

Let us also extrapolate the errors for the entire net­
work in the same way as described in section 10.1.4. 
The Kentucky-Tennessee network gave a r count of 
3.5E8. Using the r count of 1.2Ell, predicted in 
table 6.1, for the entire network, we arrive at ex­
trapolated errors of 2E-3 for the chopped solution 
and 3E-7 for the rounded solution. We did not apply 
a correction as in the Moose-Henriksen network 

because a change occurred to the inverse. The ex­
trapolations compare reasonably well to those ob­
tained from the Moose-Henriksen network. Again 
the results show that even a chopping CDC 6600 
would do the job satisfactorily, although our more 
conservative theoretical predictions do not suggest 
that such a procedure is safe. 

Now let us also try to extrapolate the r count to the 
entire network. If we reduce only the four first-level 
blocks of our test network, the corresponding r 
count amounts to I. 7E8. Upgrading this by a factor 
of 60, in order to account for about 200,000 stations 
instead of 3,400, we obtain 1E10, a number whose 
order of magnitude should agree with the low-level 
count for the entire network obtained by the pro­
cedures described in chapter 6. The top right corner 
of table 6.2 gives a value of 2.35E10. The agreement 
is considered satisfactory. 

It is also interesting to·compare the statistics on the 
size of the coefficients of the original and the reduced 
normals with those obtained for the Moose-Henrik­
sen network. Tables 10.3 and 10.4 correspond to 
tables 10.1 and 10.2 iipection 10.1.3. The present 
tables have an extra column because the normals 
were not reduced in one sweep. Therefore, the statis­
tics of the reduced first level blocks are listed 
separately for interior and junction stations. We 
refrain from exhibiting the numbers for the second­
level block reduction. As pointed out earlier, there 
were some loosely connected stations which the 
Cholesky routine took care of by automatically fix­
ing them to their approximate position. This was 
done by placing a large number at the appropriate 
diagonal positions. Consequently our statistics on the 
size of the coefficients were falsified. 

TABLE 10.3.-Size distribution of diagonal coefficients in the original and reduced normals 
after treating the jour first-level blocks. 

Size- class Original normals Reduced normals Reduced normals 
Interior equations Junction equations 

From To Absolute Relative Absolute Relative Absolute Relative 

4.6E6 - 1.8E4 2314 0.32 1044 0.19 75 0.04 
1.8E4-1.1E3 3013 .42 2858 .52 606 .36 
l.lE3- 0 1905 .26 1632 .29 1017 .60 

Total 7232 1.00 5534 l.OO 1698 l.OO 

TABLE 10.4.-Additional statistics on the size of the elements in the original and reduced 
normals after treating the four first-level blocks. 

Quantity Original normals 
Reduced normals Reduced normals 
Interior equations Junction equations 

Maximum Average Maximum Average Maximum Average 

0;; 2.9E6 l.2E5 2.4E6 7.0E4 1.8E6 l.7E4 
IJa,.IJ, 7.0E6 2.1E5 6.3E6 1.6E5 4.0E6 2.9E4 
IJa,.IJ, 3.5E6 3.5E5 3.1E6 3.1E5 2.2E6 1.3E5 
lb. I 1.5E6 2.7E3 l.SE6 1.7E3 9.0E3 l.4E2 
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Some concern is caused in table 10.3 by the num­
ber0.32 in the first row of the column titled "original 
normals, relative'' count. This number gives the ratio 
of large diagonal elements to the total number of 
diagonal elements in the original normals. In the 
most conservative estimates of chapter 8, a bound of 
0.25 was assumed for this ratio. On the other hand, it 
is comforting to see this ratio drop sharply during 
reduction. For the partially reduced normals of the 
junction stations, this amounts to only 0.04. Such a 
drop was not considered in chapter 8. Hence there is 
no need yet to revise the estimates made there. 

II. MISCELLANEOUS COMPLEMENTS 

11.1 On the Choice of Norm of the Predicted 
Roundoff Errors in Geodetic Normal Equations 

If our nonzero bounds on IE{C,}I are doubled, 
they constitute rigorous bounds on the global round­
off errors. This is true since for any elementary 
roundoff error •lj" we have always used a bound on 
IE{£lj"}l which was not smaller than one- half the 
maximum size of j.lj''l. In the literature on roundoff 
errors one finds a preference for roundoff estimates 
that have rigorous upper bounds (Wilkinson 1963, 
Bunch 1974, and Gear 1975). In this section we will 
try to explain why formulas found in the literature 
could not be immediately applied to the problem of 
predicting the roundoff errors in the U.S. network 
adjustment. 

The usual procedure for apalyzing the effect of the 
left-side triangulation roundoff errors is to specify 
elementwise bounds on the perturbation matrix ' 
which fulfills: 

(A + •)(X+ C) = b. (11.1) 

The elementwise bounds usually rely on the maxi­
mum modulus of any partially reduced coefficient 
a.!)''. They also rely on the number of elementary 
operation steps. In this respect, the procedure in sec­
tions 8.1 and 8.2 for obtaining bias estimates did not 
deviate very much. The main difference there was 
that we separated the effect of a small number of 
large coefficients alf' from the effect of a large num­
ber of small coefficients. In chapter 9, we also made 
use of the fact that the row sums of alf' are actually 
much smaller than a, times the number of coeffi­
cients per row. 

There is, however, another reason why the for­
mulas which I have found in the literature would 
grossly overestimate the errors suffered by the ad­
justed coordinate shifts. This reason is more subtle 
and we will try to explain it without going into 
geodetic network theory in depth. 

Solving (II. I) to the first degree of accuracy, we 
obtain 

(11.2) 

Let II vii, denote the Euclidean norm of a vector v and 
let II Mil, be the spectral norm of a matrix M. Then we 
have 

liM vii, .;; II Mil •II vii,. (11.3) 

If v is the eigenvector corresponding to the largest 
eigenvalue of M" M, then 

The square roots of the eigenvalues of M"M are also 
called the singular values of M. If M is positive 
definite, the singular values are identical to the eigen­
values. From (11.2) and (11.3) it follows that 

(11.4) 

From the unperturbed normal equations Ax = b, we 
infer 

(11.5) 

Combining (11.4) and (11.5) and introducing the 
condition number cond,(A) by 

(11.6) 

we obtain 

Jllli... ll•llzllxll, 
llxllz · .;; cond,(A) llbll, (11.7) 

This is the type of estimate we obtain if we use the 
roundoff literature as a guideline. Frequently, more 
precise formulas are preferred that do not rely on 
first-order approximation. 

One of the remarkable features of geodetic net­
works is that the elementwise bound llfll on F = 
A -• turns out to be much smaller than the spectral 
norm bound IIF\1, = IIA-'11•· For large and homoge­
neous geodetic networks it has been shown that 
llfii/IIF\Iz decreases asymptotically like a constant 
times log(n)!n. Here n is the number of stations. See 
Meiss! (1974) for a review of papers dealing with net­
work theory. Actually, the stated result refers to net­
works with no absolute position measurements. In 
the presence of Doppler stations it is no longer valid 
theoretically. However, it is still a reasonable guide­
line, as long as the accuracy of the Doppler stations is 
low compared with the accuracy of the relative obser­
vations. 

Intuitively, the reason for the discrepancy between 
llfll and II Fll, is the following: Representing (11.2) as 

C = -A -• (a) (11.8) 
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one infers that II ~II, will come close to 

11~11, = IIA-'11, ll•xl!,. (11.9) 

if~ and a are expressible in terms of eigenvectors of 
A, which belong to small eigenvalues of A. (Small 
eigenvalues of A correspond to large eigenvalues of 
A-• .) Such eigenvectors are associated with smooth 
distortions of the whole network. The network corre­
sponds to an elastic system with elastic elements be­
tween neighboring stations. A smooth distortion of a 
certain amplitude will result in a small amount of 
associated elastic energy. A high frequent distortion 
of comparable amplitude will give a much larger 
energy value. For a smooth network distortion~. the 
ratio 11~11,111~11 will be large, i.e., the spectral norm 
of ~ will be much larger than the magnitude of the 
largest component of ~· This is one of the main 
reasons why eq. (11.7) will never give good estimates 
if one is interested in positional errors, i.e., in errors 
~ of the components x relative to the magnitude of 
the largest component. 

To further illustrate our line of reasoning, suppose 
that ~ corresponds to a smooth distortion of the net­
work with an amplitude of 0.1 mm. Because ~ has 
about 350,000 components, the magnitude of the 
Euclidean norm WI, can be the same as that of 
O.l•V350,000 =59 mm. Equation(ll.7) must take 
care of such situations. Hence it overshoots the error 
norm 11~11 = Max (1~·1>, by a factor of 600. The 
estimates of chapters 8 and 9 are based on 11~11 and 
not on 11~11 ,. Hence more favorable results could be 
obtained. 

11.2 Asymptotic Roundoff Error Estimates 

In this section we look beyond the particular case 
of the U.S. network. We are concerned with net­
works whose number of stations grows beyond all 
limits. For simplicity, we exclude a number of sub­
cases that require separate and elaborate arguments. 
We assume that our networks are homogeneous with 
respect to the distribution of observational weights. 
We also assume that the reference surface is a plane 
and that the networks extend in both coordinate 
directions. Thus we exclude strip-like networks. We 
further exclude pathologically shaped boundaries, 
and deal with square-shaped networks only. Never­
theless our results will be representative for a fairly 
general class of networks. · 

We assume that the normals are solved by Choles­
ky's method and that the solution process is orga­
nized according to the nested dissection scheme. 

The estimates will be qualitative in the sense that 
they will contain unspecified constants. The presen­
tation in this section will not be entirely self­
contained. We shall use some results available from 
the theory of geodetic networks. 

11.2.1 Nested dissection of homogeneous and 
regular networks 

Figure 11.1 is a repeat of figure 3.6 except for a 
slight modification. The modification involves a re­
verse numbering of the block levels. We denote the 
block levels by£= 0,1 ,2, ... , starting from the high­
est level and proceeding downward. It is important to 
note that the bars of the cross-like sets which form 
the impenetrable barriers are rather narrow. In chap­
ter 6 we assumed double rows of stations along these 
barriers. 

Let n denote the number of stations in the entire 
network. Then the width of the network comprises 
Vii stations. At level £, the network decomposes into 
41 blocks. A barrier set crossing one of these blocks is 
comprised of stations whose number must be bound­
ed by yn/(21

) multiplied by a constant. It follows 
that the total number of stations inside the block 
must be bounded by a constant times Vn/(2'). We 
must be aware that the equations belonging to sta­
tions inside a block split into interior equations and 
junction equations. The jupction equations partici­
pating in the partial reduction of a block involve not 
only stations inside the 'block but also stations of 
neighboring blocks. We introduce 

m, = 0 (Vn/21
) (11.10) 

as a common bound of the interior as well as the 
junction equations in a block of level £. It is now easy 
to derive total n and r counts for the entire network. 
Although the normals of the block may be structured 
as shown in figure 6.11, we assume nonzero coeffi­
cients over the entire block, as shown in figure 11.2. 
Applying the methods given in chapter 6 for the 
problem of counting nonzero coefficients and ele­
mentary computational steps, we see that the con­
tribution of a row of interior equations labelled x to 
the total n count is the same as x itself. The contribu­
tion to the r count is 2x•(2m1-x). For a row x of 
junction equations the corresponding numbers are m, 
and 2m,•x. Hence then and r counts for the block 
are given by 

ml ml n=I xdx+ I m,dx= O(ml) 
0 0 

r = f'2x(2m,-x)dx + 
0 

mj 

+ I 2m, x dx = O(mi). 
0 

Combining this with (11.10) we get 

n = O(n/4'), r = O(nvn/8') 

... for one lev elf block. 

(11.11) 

(11.12) 

(11.13) 
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3 

----
Figure 11.1.- Nested dissection of a geodetic network. 

Multiplying these numbers by the number of blocks 
at level£, which is 41, we obtain then and I counts 
for level£ 

n = O(n), r = O(nvn/2') 

... for all level£ blocks (11.14) 

Now we sum over the levels. Clearly the number of 
levels is bounded by a constant plus /og,vn. This is 
what nested dissection is all about. We note that 
log,Vn = 0(/og n). Hence the total n and r counts 
are obtained as 

0(/og n) 

2 
l=O 

O(n) = O(n log n) n= 

l= 
0(/og n) 

2 
l:O 

O(nvn/21) = O(nVn) 

... for the whole network. (11.15) 

These results are due to George (1973). It is pointed 
out that our symbol n corresponds to n' in George's 
notation. 

Recall from section 3.5 .4 that the n and I counts 
for minimum bandwidth ordering are given by 

n = O(nVn), r = O(n'). (11.16) 
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interior 
equations 

junction 
equations 

Figure 11.2.-Simplified structure of normal equations for a one Ievel-l block. 

11.2.2 A general theorem 

In this subsection we will bound the bias and stan­
dard deviation of the global roundoff error suffered 
by a coordinate shift in terms of the following quan­
tities: 

n ... number of stations 
II all ... bound on the largest element of A 
llfll ... bound .on the largest element of F, the 

inverse of A 
llxll ... bound on the largest element of the solution 

vector x 
lib" II· .. bound on the largest right hand side b)" 1, 

encountered in the original normals or in 
any of the partially reduced normals AWx 
= b¥>l. 

Remark: A quantity like II b0 II should actually not 
appear in an a priori roundoff estimate. For any 
estimate involving II b" II we will also specify one that 
is free of this quantity. The reason for including II b0 II 
in some estimates is that we believe this quantity to be 
extremely well behaved in practical applications. (See 
the discussion in section 7 .2.2.) 

The following theorem is only based on the as­
sumption that A is a positive definite matrix referring 
to a sparse system which may be subjected to nested 
dissection as outlined in the previous section. Such 
systems are not only typical for geodetic networks, 
but also for a wide range of structural analysis prob­
lems treated by the finite element method. 

Theorem 11 .1. Suppose that the normals of a large 
and homogeneous geodetic network are solved by 
Cholesky's method and that the solution process is 
organized according to the nested dissection scheme. 

Assume that the calculations are done in floating 
point arithmetic, that f3 is the base of the number 
system, and that the mantissas have a fixed length of 
T digits. Rounding may be biased or unbiased. In the 
latter case the bias estimates specified below are irrel­
evant. We split the globa'l roundoff errors ~' suffered 
by coordinate x, as 

~. = ~!"' + ~!"' + ~~··· (11.17) 

Here the superscripts It, rt and bs refer to compo­
nents of ~. that are propagated from different types 
of local roundoff errors, namely: left-side errors dur­
ing the triangular decomposition, right-side errors 
during triangular decomposition, and back-substitu­
tion errors. 

The following estimates are true in linear approx­
imation: 

s 
IE{~!"' }I " llallllfllllxll O(n') [3_,., (11.18) 

IE{~I"'}I "llfllllb"ll O(n log n) [3_,., (11.19) 
s 

- "-" llallllfllllxll O(n') [3_,., (11.20) 

IE{~I'''ll "V llallllfllllxll O(n) [3_,., (11.21) 

oW"'}" llallllfllllxll O(V n log n) [3_,., (11.22) 

o{~l'''}" llfllllb''ll O(V n log n) [3_,., (11.23) 
3 

- "-" llallllfllllxll O(n<) [3_,., (11.24) 

o{~l'''}" V llalllllllllxll O(V n log nW,.'. (11.25) 

We note that the constants hidden in the 0 symbols 
depend on only local structure, i.e., on the pattern of 
observations and their weights. 
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Proof· Consider partial reduction of a level 1 
block. Focus attention on a locallt type error •If>' = 
E.1/i + E.&V occurring during the evaluation and sum­
mation of a product term r,;r,1• Recalling (7 .1), we 
have the representation rki,kj = affl - a~j-1 l. Bias and 
standard deviation of •If>' may be bounded as 

IE{•lf:'}l = O(llalf'll + lla!f-''11> {J_,., 
(11.26) 

o{•,'f'>'} = O(lla!f'll + llai,;-''ID (J-•" 

(See section 4.1.1.) Summing over all locations (~j), 
i;.i, and using the definition of the row sum norms 
llai.''ll, and llai.''ll1, found in(7 .4) and(7 .5), we get 

1
t, IE{•lf>'ll = O(llai.''ll• + llai.'-"11,) (J~•• 

~p1{•lf>'} = O(llai.''lll + lla?-"lll> {3_1,.1. 
(11.27) 

Now we use the bound on the row sum norms pro-
vided by proposition (7 .I). In these bounds we can 
replace ).MAx by O(llali), as argued in section 7.1.3. 
We obtain 

llal"ll• = llaiiO(v'"ic.), lla?'ll1 = llaiiO(l). 

Here x, is the number of nonzero coefficients a)<-•' to 
the right and including the diagonal position in 'equa­
tion i. It follows that 

1t, IE{•IJ>'ll = II all ocvx .. ) fJ-·•• 
(11.29) 

Our next step is to sum these relations over k. Only 
roundoff errors associated with nonzero product 
terms contribute nontrivially to the sum. We recall 
that ,..,, is the number of nonzero product terms which 
are subtracted from ail during triangular decomposi­
tion, and that J.lu,;,J.Iu· It follows that the row sums of 
the local roundoff errors £,1, which are the superposi­
tion of the •if:', are bounded by 

k IE{£ull ,;, II all J.!u O(v'"ic.) (J-••• 
(11.30) 

1
t, 0 1{£,J!,;, llall1 J.!u 0(1) {J-1'+

1. 

We now replace the summation over rows i by in­
tegration. Dealing with one £level block we label an . . . ' mtenor row by x, as shown m figure 11.2. We then 
can takeJ.! .. =X and x,=2m1-x. Now we integrate the 
interior rows from X= 0 to X= m1. Proceeding in a 
similar manner for the junction equations, where, in 
agreement with figure 11.2, we take ,.. .. = m1 and 
Xx = x, we obtain 

+ }' m1Vx dx} 0(1) (J-•" 

s 
= II all O(m, 2 ) fJ-·•• 

~ ?. o1{•u},;, llall11 'i''xdx + 
• J~· 1o.J 

+ J'm1 dx} 0(l){J_1
,.

1 

= llall1 O(m)}{J-1'•1. (11.31) 

Inserting from eq. (11.10) we get 

s Sf t: 
1
t, IE{•ii}l,;, II all O(n4f22 )(J-•" 

t: 
1
t, o1{•iill,;, llall1 O(n/41) {J-1'+

1 

... for one block oflevel£. (11.32) 

Summing over all41 blocks at level£, we obtain 

S I t: 
1
t, IE{•,;ll,;, II all O(n4f22) (J-••• 

"f. J, o1{£,,},;, llall1 O(n) W1
'+

1 

. .. for all blocks of level£. (11.33) 

Finally, summing over all levels whose number is 
O(log n), we find 

s f. k IE{£,;}1,;, II all O(n') {J_,., 

f. ;t; 0 1{£ii},;, llall1 O(n log n) {J-1'+1 

... for all levels. (11.34) 

Referring to (4.35) and (4.36a), we take the square 
root of the second expression; we then multiply both 
expressions by 2, 11/11, llxll to get the global bounds 

s 
IE{~,}I ,;, llallllfllllxll O(n4 ) (J~•• 

(11.35) 
oR,} ,;, II allllfllllxll O(V n log n) ~-·••. 

Thus we have proved the assertions (11.18), (11.22) 
on the It type errors. Let us outline the proofs for the 
remaining assertions. A right-hand side bl" occur­
ring during partial reduction of a block at level£ can 
be bounded by either II b"ll or by 

lib!'' II ,;, llallllxll O(Vm,). (11.36) 

The last bound follows from bl'' = ~ a!f'x1 and also 
from modifying the proof of the first 1part of proposi­
tion (7 .I) in such a way that it applies to the entire 
row instead of the upper diagonal portion of the row. 

The number of product terms subtracted from a 
right-side coefficient is bounded by J.l;;. Hence for one 
block of level£ we get 
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~ IEh}l<;; lib" II { J'xdx + J'm, dx} 0(1)/r'" 
' 0 0 

= llb"ll O(ml){J_,., = llb"ll O(n/41)(J-•". (11.37) 

This is alternatively bounded by 

~ IE{>7,}1 .;; II all llxll ~J' x Vtil, dx + 

+}' m,Vtil,dx} 0(1) {J_,., 

s 
= llallllxll O(m1') (J-••• 

s SJ 
= llallllxll O(n </2T) (J-•••. (11.38) 

The blockwise sum foro'{"',} is bounded by 

~ o'h} <;;lib" II' ~J'xdx +J'm, dx} O(l){J_,,., 

= II b" II' O( m)) fJ_,., 

or alternatively by 

~o'h} <;;II all' llxll'{ J'xm, dx + 
' 0 

+}' m,m,dx} 0(1) {J-"•' 

= II all' llxJI' O(mf! (r'••' 

3 
= II all' llxll' O(n2 18') {J-"•'. 

(11.39) 

(11.40) 

Eqs. (11.37-40) lead in a straightforward way to eqs. 
(11.19-20) and (11.23-24). This proves the assertions 
on the rt type errors. 

Turning to back-substitution errors, we are faced 
with the problem of specifying elementwise bounds 
on the left and right side coefficients and on the row 
sum norms of the triangularized system Rx= s. From 
A = RT R and F = R-• (Rrt• it is easy to conclude 
that elementwise bounds on R, R-• are given by 

llrll = O(v1iall), llr'-"11 = O(v'l1711). (11.41) 

Again using RTR = A, and modifying the proofs of 
proposition 7 .I, we show that 

llr,.ll, = v'llalf O(ViC,), llr, IJ, = v1lall 0(1) (11.42) 

are valid bounds on the row sum norms of R. It 
follows that v'llalf llxll O(Vtil,) is a bound on the 
right side s, of equation i in the triangular system 
Rx = s when the equation is associated with a block 
of Ievell. Note that the triangular system comprises 
only interior equations. There are no junction equa­
tions. The local errors occurring during the treatment 

of an interior equation i in a block at level 1 are 
therefore bounded by 

IEh}l .;; v11allllxll O(Vm,) {J_,., 
(11.43) 

We recall the general discussion in section 4.2.2 
and note that x, <;; 2m,. Hence the superpositions of 
all these errors per block are obtained by the now 
familiar integration procedure as: 

~ IE{'7,}1<;; v'llalf llxll J'vm, dxO(i) {J_,., 
' 0 

3 
= v11allllxll O(m1

2 ) (J-••• 
3 3J = v1iallllxll O(n</2T) {J_,., 

~ o'h} <;; llallllxll' J' m, dxO(l) {J_,., 
' 0 

= llallllxll' O(m)) {J_,., 

= llallllxll' O(n/41
) {J_,., 

... for one block of Ievell. (11.44) 

We multiply by 41 to sum over the blocks per level. 
When we subsequently sum over the levels, it is im­
portant to keep in mind that their number is bounded 
by log,ll/l + 0(1). We finally get 

~ IEhll = v'llalf llxll O(n) {J_,., 

~ o'{"',} = llallllxll' O(n log n) {J_,.., 

... for the whole network. (11.45) 

Multiplying by the norms llr'-"11 = . O(v'l1711), as 
given by (11.41), we finally get (11.21) and (1.25). 
This concludes the proof of the theorem. 

11.2.3 Networks without absolute position 
observations 

We now deal with networks whose measurements 
are only relative. Of course, the measurements are 
also restricted to local connecting pairs, or small sets 
of stations situated in close vicinity. The locality of 
the observations is necessary for applying the nested 
dissection. Our networks are also assumed to be "lo­
cally stable." By this we mean that they are com­
posed of many interlocking small subnetworks which 
are stable by themselves. Thus we exclude pathologi­
cal networks which may not be decomposed into ... 
local solvable subnetworks. Because the absolute 
position is not observed, it must be fixed by con­
straint. We will further distinguish between two prac­
tically important classes of networks. 
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11.2.3.1 Networks obeying the logarithmic law 
For these networks the following is asymptotically 

true: 

llallll/11 = O(log n). (11.46) 

The following types of networks are included in 
this general class: 

(•) Networks with regularly distributed directions, 
distances, and azimuths, fixed by a small number of 
constrained stations containing at least one fixed sta­
tion. We call these networks "direction, distance, 
.and azimuth networks that are weakly constrained.'' 

( •) Direction and distance networks that are weak­
ly constrained by widely spaced fixed stations. 

( •) Pure distance networks that are weakly con­
strained by widely spaced fixed stations. 

(•) Pure direction (i.e., purely angular) networks 
that are constrained by fixing all stations along the 
perimeter. It is also sufficient if the fixed stations 
along the perimeter are closely spaced. Such net­
works include planimetric photogrammetric blocks 
with dense perimeter control. 

All these networks obey the logarithmic law speci­
fied in (11.46). For more details refer to Meiss! (1969, 
1972, and 1974), Borre and Meiss! (1974), and Bar­
telme and Meiss! (1974). Combining (11.46) with 
theorem (II.!), we conclude that the global roundoff 
errors are asymptotically bounded as 

s 
IE{~,}I <> llxll O(n' log n) (J_,., (11.47) 

II hOII 3 
a{~,}<> (llxll + M) O(yn(/og n)T) (J-••• (11.48) 

3 
a{~,}<> llxll O(nT log n) r••. (11.49) 

As previously explained in chapters 7 and 9, I be­
lieve that in many practical situations the buildup of 
roundoff errors is more closely reflected by the fol­
lowing estimates that have a smaller asymptotic 
growth rate: 

IE{~,}I <> llxll O(n (log n)') (J_.., (11.50) 

3 
a{~,} <> llxll O(vn(log n)T) (J_,.,. (11.51) 

However, this can be strictly guaranteed only for lev­
eling networks and for special distance and azimuth 
networks that are equivalent to them. (See Borre and 
Meiss! (1974) for a discussion of such networks.) 

!1.2.3.2. Networks obeying the "Dutch law" 

Such networks are characterized by the following 
asymptotic law: 

llallllfll = O(n). (11.52) 

Prominent examples of such networks are purely 
angular networks weakly constrained by widely 
spaced fixed points, and that contain at least two 
fixed points. Also planimetric photogrammetric 
blocks are included if they are constrained in the 
same way. Refer to Meiss! (1976) for ·a proof of this 
law, which was postulated by the Dutch geodesists 
Tienstra, Baarda, and Alberda. Independently, the 
law was experimentally discovered by the photo­
grammetrists Ackermann and Ebner. 

Combining this law with theorem (II. I), we arrive 
at the following rigorous asymptotic bounds: 

9 IE{C,}I <> llxll O(nT) (J-•" (11.53) 
II hOII 3 

a{~,} <> (llxll + M) O(nT V log n) (J_,., (11.54) 

7 a{C,} <; llxll O(n4 ) (J-•••. (! 1.55) 

Again, I believe that the following estimates reflect 
the true situation in a better way: 

IE{C,}I <> llxll O(n' log n) (J_,., 

3 a{C,} <; llxll O(nT log n) (J_,.,. 

(!!.56) 

(11.57) 

11.2.4 Networks with absolute position 
observations at regularly spaced intervals 

If absolute positions are observed at a subset of 
stations that covers the entire area of the network 
and is not too widely spaced, the strength of the net­
work, which is reflected by llall and the size of 
the elements f,1 of the inverse, improves drastically. 
The type of the relative observations therefore is im­
material. We may even deal with a purely angular 
network, superimposed, for example, by Doppler 
observations. 

Suppose that we deal with two coordinates i,j 
which belong to two different stations. We denote 
the distance between these two stations by d,1• The 
following is asserted: 

llallll/11 = 0(1) 

I f,1 = 0( d!.) for any k>O. 
" 

(11.58) 

(! 1.59) 

Thus it turns out that, given the size of II all, 
the elements f,1 of the inverse are asymptotically 
bounded. Furthermore, the f,1 decay more rapidly 
than any negative power of the distance between the 
two stations involving coordinates i andj. 
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Statement (11.58) is rather trivial. The position of 
any station can be derived by nonrigorous adjust­
ment from observations in a subregion that includes 
one or two stations with observed absolute position. 
Hence the variance of the position of any station is 
bounded after nonrigorous adjustment. Rigorous ad­
justment will yield even smaller variances .fu. Hence 
llfll must be bounded. 

A proof of statement (11.59) is not yet available in 
the geodetic literature. The statement can be proved 
easily by Fourier analysis for a regular infinite net­
work covering the whole plane. The stations with ab­
solute position observations must form a regular 
subgrid similar to the one shown in figure 5.13. The 
network is partitioned into clusters of stations such 
that any cluster contains one station with observed 
position. These clusters take over the role of a single 
station of the Fourier analysis outlined in section 
5.5.1. The analog of the matrix function A{~,1p} in­
troduced by eq. (5.19) will be a matrix function 
which has twice as many rows and columns as there 
are stations in one cluster. We find that the analog to 
the kernel function A" introduced by (5.15) has a 
true inverseF" and that its Fourier transformF{~,1p} 
= A(~,tp)-' is an analytic periodic function. Its 
Fourier coefficients are the f,, for which the property 
(11.59) then can be inferred. 

Based on (11.58-59) roundoff error estimates can 
be specified that show a smaller asymptotic growth 
rate than those of the previous section. The improve­
ment is not very dramatic. However, I believe it is 
possible to prove that a statement analogous to 
(11.59) is also valid for the coefficients al)', namely 

al)' = 0( d•. ), foranyk>O. ,, (11.60) 

Since many details of the proof are yet to be 
worked out, the remaining statements in this subsec­
tion are formulated only as conjectures. 

( •) Although the number of elementary opera­
tional steps involving one left-side location (i,J) or 
one right-side location ( i) during the reduction of the 
normals increases indefinitely as the number n of sta­
tions increases, mean E{<,}, E{1J1}, and standard 
deviation of<,}, o{l'J.} of the local roundoff errors''" 
'1, remain bounded because of(ll.60). 

( •) Although the number of local errors,,,, '1• dur­
ing triangular decomposition and back-substitution 
increases indefinitely as n increases, the total in­
fluence of all these errors upon the global position of 
a particular station remains bounded because of 
(11.59). 

Hence the following should be true: 

IE{C;}I = llxll 0(1 W"' 

o{C,} = llxll 0(1} (J-•". 

(11.61) 

(11.62) 

The relations (11.59 and 60) express a nearly com­
plete lack of coupling between distant portions of the 
network. The network is practically only as strong as 
a collection of separately adjusted subnetworks. By 
adjusting the whole network in one piece, an enor­
mous number of operational steps are carried out 
that involve very small operands, whose effect on the 
final result is practically zero. 

11.3 Roundoff Estimates for the UNIVAC 1100/40 

Because I received the news that the adjustment of 
the U.S. network would be done on the UNIVAC 
1100/40 after this study had been nearly completed, 
it was not possible to give this machine proper em­
phasis in my discussions. (Refer also to the remarks 
at the end of section 1.5.) I do not consider it a waste 
of time that I concentrated on the CDC 6600 and the 
IBM 360 because these machines come close to repre­
senting the two extreme cases of true rounding and 
true chopping. The UNIVAC 1100/40 performs 
something in between. Its arithmetic is biased, but 
the bias is difficult to describe. It is easier to specify 
bounds on the bias that overestimate it somewhat. 
Once this is done, it is easy to modify our so-called 
"safe" estimates for the IBM 360 and apply them to 
the UNIVAC 1100/40. 

11.3.1 Double precision floating point arithmetic 
on the UNIVAC 1100/40 

Here we are dealing with a binary machine, i.e., 
the base {J=2. Double precision floating point num­
bers allow for mantissas ofT= 60 bits. Mantissas are 
considered as being normalized for our purposes. 
Mantissas of negative numbers are l's complement­
ed. Normalization implies that the leftmost digit of a 
positive mantissa is a I, while for a negative mantissa 
it is a 0. If a number is used as an operand during an 
elementary arithmetic operation, the mantissa is 
placed into the 60 rightmost positions of one of the 
72-bit registers that participate in the arithmetic 
operations. The 12 positions to the left are filled with 
signbits that are O's in the case of positive numbers 
and l's in the case of negative numbers. 

It is sufficient to understand the processes of dou­
ble precision addition/ subtraction and multiplica­
tion. The number of divisions and square roots is 
negligible during Cholesky reduction of the normals 
in the U.S. network. Let us start with the simple case 
involving the addition of two positive numbers a, b. 

~~~~~~~--~-~~--
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Assume that the exponent of a is not smaller than 
that of b. The mantissa of a is placed into the 72-bit 
augend register as described above. The mantissa of 
b is placed into the addend register. Exponents are 
placed into separate registers. If the exponent of b is 
smaller than that of a, then the mantissa of b is 
preshifted to the right by an appropriate number of 
positions. Thereby all trailing digits that leave the 
addend register are lost. There is no guard digit as in 
the case of the IBM 360. Thus a preshift can decrease 
the addend b. Now addition is performed in the 
augend register. Although in reality the adder works 
subtractively the manufacturer's manual assures us 
that we may imagine addition in a traditional way. 
See the reference on the Sperry-Univac 1100 series. If 
the sum has 61 significant digits, a postshift occurs 
by one place. It may diminish the sum. We recognize 
that the result a ® b is the one obtained by truly 
chopping a+ b. 

Let us consider the case where a and bare negative. 
The complementary mantissas are then placed into 
the 72-bit registers. A preshift of b can decrease the 
magnitude of b. Because the sign bits are equal to 1 in 
the leading positions of the two registers, the addi­
tion causes a carry at the leftmost position of the 72-
bit adder. The carry is added to the rightmost posi­
tion. This "end around-carry" ensures that the 1's 
complement of the result is correctly obtained. A 
postshift may again reduce the magnitude of the 
sum. We again recognize that a truly chopped result 
is obtained. 

Things change when we turn to the "subtract mag­
nitude" case. It suffices to outline the case of a sub­
traction a- b, assuming that a>b>D. Before addition 
takes place, the augend register holds a and the ad­
dend register holds the complement of b. A preshift 
of b may decrease its magnitude. Hence the sum will 
be either correct or too large, but it will never be too 
small. Normalization of the sum may necessitate a 
postshift to the left. This will not change the sum. We 
recognize that a 0 b is the upward rounded differ­
ence a-b. 

We summarize our findings by stating that the 
"add magnitude" case of addition/subtraction pro­
duces a downward rounded (chopped) result, while 
the "subtract magnitude'' case causes upward round­
ing. 

Therefore, let c be an integer power of the base {l 
= 2 such that c bounds lal, lbl, and la±bl. It holds 
that 

1£{<'±>)1.,; -'-2-" 
2 

(11.63) 

(11.64) 

The case of double precision floating point multipli­
cation is more involved. Mantissas of the operands 
are made positive before multiplication starts. The 
signs are treated separately. A multiplicand register 
holds a, a multiplier register holds b. The multipli­
cand is repeatedly added to a properly shifted partial 
product which is accumulated in a 72-bit accumula­
tor. These additions take place in agreement with the 
digits of the multiplier. Of course, the process begins 
by looking at the least significant rightmost digits of 
the multiplier and proceeds to the most significant 
leftmost digits. Things are speeded up by treating the 
digits in pairs. In the case of a pair "00," a right shift 
by only two digits takes place in the accumulator. 
Any right shift causes a loss of digits shifted out of 
the accumulator. A pair "01" requires addition of 
the multiplicand followed by a right shift of two 
places. A pair "10" causes a right shift of one digit, 
followed by addition of the multiplicand, followed 
by another right shift of one digit. A pair "11" will 
cause the multiplicand to be subtracted from the par­
tial product which is then right shifted by two places. 
A borrow of one must then be added to the portion 
of b to the left of the pair of digits just treated. The 
procedure replaces the addition of three times the 
number a by subtracting a and adding it four times. 
In this way the leftmost 60 digits of the product of 
the 2 mantissas are correctly obtained. The 60 right­
most positions are chopped off. The leading digit to 
the left can be zero. A left postshift by one place is 
then necessary. In this case, only 59 significant digits 
are recovered. 

.We summarize by stating that a® b equals a • b, 
chopped to either 60 or 59 digits depending on 
whether the full product of the two mantissas has 120 
or 119 nontrivial digits. In order to bound the ele­
mentary roundoff error of multiplication, we let c be 
an integer power of the base 2 that bounds a •b. It 
follows that 

IE{<''')I.,;; c2-•• 

o{E''') .;;~2-•• 
v'TI 

(11.65) 

(11.66) 

Note that these bounds are twice as large as those 
related to true chopping. 

11.3.2 Safe bounds for the UNIVAC 1100/40 

All that is needed now is to repeat the calculations 
in chapter 8 that apply to the IBM 360 using modified 
bounds on mean E{Eli") and standard deviation 
o{<ii'') of the elementary roundoff errors. The new 
bounds are obtained by applying factors to the corre­
sponding bounds in chapter 8. The factors are ob­
tained as follows: 
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( •) The overwhelming majority of elementary 
roundoff errors occur in pairs EL1 and E.,)z> during 
evaluation and addition of the product terms r.,r'". 
As compared to the IBM 360, the bounds for the 
UNIVAC 1100/40 on the elementary roundoff errors 
during multiplication are multiplied by a factor of 2, 
if we temporarily disregard the difference due to dif­
ferent [3 and T. .Hence we apply a factor of 
(1 + 2)/2 = 1.5 in the case of the bias, and a factor of 
V (1'+ 2')/2 = 1.58 in the case of the standard devia­
tion. 

(•) Because of the difference between [3 and T on 
the two computers, we apply a factor of 2-'0/16-" = 
1/16 to all estimates. 

(•) We must reexamine the choice of the factors c 
and c given in chapter 8. These factors bound ele­
ments a, in the two different size classes in terms of 
integer powers of the base [3. Occasionally a factor of 
ffor of 2V/fis also involved. We find that there is 
no reason to further adjust the bias estimate. In the 
case of the standard deviation we see that another 
factor of VZIVT6 = 0.35 must be taken into 
account. 

Summarizing, we conclude that a factor of 0.094 
must be applied to the bias type estimates and a fac­
tor of 0.035 must be applied to the standard devia­
tion estimates. Treating the last column of tables 8.5 
and table 8.7 in the indicated way, we arrive at the 
numbers listed in table 11.1. 

TABLE 11.1.-Bound on bias and standard deviation of the global 
roundoff errors encountered on the UNIVAC IJ00/40 during the 

first iteration of the U.S. network adjustment. 

Quad Bound on Bound on 

+ A E{{,) a{{,) 
m m 

39 77 0.00014 3.2E-8 
47 69 0.00019 4.4E-8 
47 121 0.00013 2.6E-8 
41 97 0.00010 2.0E-8 
35 ll1 0.00009 2.0E-8 

About one more correct decimal digit is gained on 
the UNIVAC 1100/40 as compared with the IBM 
360. This is, of course, already indicated by the fac­
tor 0.094 which is applied to the bias type estimates. 

11.3.3 More realistic estimates 

Our description will be very brief for adapting the 
estimates of chapter 9 to the UNIVAC 1100/40. 
When the NOS algorithm accumulates the product 
sums, the "add magnitude" case will prevail. This is 
strictly true for the product sums which refer to diag­
onal positions. For the off-diagonals it is not strictly 
true; however, I believe the transition of au to a!j-'> 

proceeds monotonically in many cases. Since the 
"add magnitude" case is associated with chopping, 
most arguments used in chapter 9, in the case of the 
IBM 360, carry over to the UNIVAC 1100/40. 
Hence, I believe that the estimates can be lowered by 
about one to two decimal places, if one allows for a 
small probability of error. 

11.4. Recovering [pvv] from the Reduction of the 
Normal Equations. 

In textbooks on geodetic least-squares adjustment, 
e.g., J ordan/Eggert/Kneissl (1961), the symbol [pvv] 
denotes the weighted square sum of the residuals of 
the observations after adjustment. ( v are the correc­
tions to the observations after the adjustment.) The 
symbol [pl£] stands for the weighted square sum of 
residuals before adjustment. (1 are the discrepancies 
between observations and corresponding values cal­
culated from approximate coordinates.) If the right­
side vector b of the normal equations is augmented 
by [p££] and if the reduction of the normals is carried 
out one step farther, then [p££1 is transformed into 
[pvv]. The relevant formula is particularly simple, if 
Cholesky reduction is used. It reads as 

[pvv] = [pH] - f s!. 
f::l 

(11.67) 

Refer to eq. (3.7) for the definition of s,. The ques­
tion is: to what extent is [pvv) perturbed by roundoff 
errors during the solution of the normals? 

The quantity [pvv], divided by the difference of the 
number of observations minus the number of un­
knowns, gives the squared unit weight error. The unit 
weight error should not differ appreciably from 1. 
The number of observations is 2-3,000,000. Hence 
we expect [pvv] < 10'. 

Next we estimate how much [p£1) can exceed 
[pvv]. The ratio [p£1]/[pvv] depends on the local 
quality of the approximate coordinates. I believe that 
discrepancy 1, calculated from the difference of an 
observed quantity minus the quantity computed from 
the approximate station coordinates, does not exceed 
the rms error of the measurement by a factor of 10 to 
100. Note that the observations connect only stations 
within a close vicinity. Although we expect coordi­
nate shifts to exceed 10 m during the first iteration, I 
do not believe that the relative position of neighbor­
ing stations calculated from the approximate coordi­
nates will deviate by more than a few decimeters 
from the relative position calculated from the ad­
justed coordinates. Hence during the first iteration, I 
expect that the ratio of [p11)/[pvv) will be below 103 

- 104
• The ratio will be much closer to 1 during 

subsequent iterations. Then we will observe a ratio 
[p£1]/[pvv] £< 1. In the first iteration, we can have 
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[pll] ;,. 10", and consequently L sl ;,. 10". The 
average size of an s, is therefore V 10"/350,000 ;,. 
500. Our problem is to estimate the roundoff errors 
suffered by the right- hand sides s, of the triangular 
system. Because errors are encountered during back 
substitution, we can assume that the s, are not less ac­
curate than the solution vector is. The relative accu­
racy of s, and x, will be about equal if i approaches n, 
the number of equations. If the solution vector is 
good to about four to five leading decimal digits, 
then L sl is good to the same number of leading 
digits. (The 350,000 summations can be safely ig­
nored). If [pH] ;,. 10", L sl;,. 10", and [pvv] ~ 10', 
then [pvv] may be totally wrong, because of a wiping 
out of the leading digits. 

It should not be viewed as a catastrophe if [pvv] is 
wrong after the first iteration. Subsequent iterations 
will give a [pvv] which is good to as many digits as the 
solution vector. If [pvv] were to have some correct 
digits even after the first iteration, then the number 
of correct digits of the solution vector can be esti­
mated from those of [pvv], plus the difference of 
decimal digits· of [pH] and [pvv]. 
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